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Abstract

Despite their success, modern convolutional neural networks (CNNs) exhibit fun-
damental limitations, including data inefficiency, poor out-of-distribution gener-
alization, and vulnerability to adversarial perturbations. These shortcomings can
be traced to a lack of inductive biases that reflect the inherent geometric structure
of the visual world. The primate visual system, in contrast, demonstrates superior
efficiency and robustness, suggesting that its architectural and computational prin-
ciples,which evolved to internalize these structures,may offer a blueprint for more
capable artificial vision. This paper introduces Visual Cortex Network (VCNet), a
novel neural network architecture whose design is informed by the macro-scale
organization of the primate visual cortex. VCNet is framed as a geometric frame-
work that emulates key biological mechanisms, including hierarchical processing
across distinct cortical areas, dual-stream information segregation for learning
disentangled representations, and top-down predictive feedback for representa-
tion refinement. We interpret these mechanisms through the lens of geometry
and dynamical systems, positing that they guide the learning of structured, low-
dimensional neural manifolds. We evaluate VCNet on two specialized benchmarks:
the Spots-10 animal pattern dataset, which probes sensitivity to natural textures, and
a light field image classification task, which requires processing higher-dimensional
visual data. Our results show that VCNet achieves state-of-the-art accuracy of
92.1% on Spots-10 and 74.4% on the light field dataset, surpassing contemporary
models of comparable size. This work demonstrates that integrating high-level neu-
roscientific principles, viewed through a geometric lens, can lead to more efficient
and robust models, providing a promising direction for addressing long-standing
challenges in machine learning.
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1 Introduction

Contemporary deep learning models for image recognition, particularly Convolutional Neural Net-
works (CNNs), have achieved remarkable success Krizhevsky et al. [2012]. However, their prowess
is shadowed by critical challenges that impede their widespread and reliable deployment. These
models often require vast, meticulously labeled training datasets, exhibit poor generalization to
out-of-distribution (OOD) examples Sagawa et al. [2020], and are notoriously vulnerable to adver-
sarial attacks and partial occlusion Liu et al. [2022]. Minor, human-imperceptible perturbations
or hidden object parts can cause catastrophic failures, raising concerns about their reliability in
safety-critical applications. These persistent issues are not merely implementation details but may
point to a fundamental inadequacy in their core architectural assumptions. While CNNs incorporate a
crucial geometric prior-translation equivariance,they largely fail to account for other fundamental
symmetries and structures of the visual world, such as rotation, scale, and the compositional nature
of objects.

In stark contrast, the primate visual system is a paragon of efficiency and robustness. Humans
can learn to recognize objects from few examples Lake et al. [2015], generalize effortlessly across
novel contexts Geirhos et al. [2018], robustly identify occluded objects Hegdé et al. [2008], and
operate with unparalleled energy efficiency Lennie [2003]. Mounting evidence from neuroscience
suggests these capabilities are rooted in the specific architectural and computational principles of
the visual cortex. Neural representations in the brain appear to be organized on low-dimensional,
structured geometric spaces, often referred to as neural manifolds. The brain seems to learn not just
features, but the underlying geometric and topological structure of the data-generating process. This
is achieved through its unique hierarchical organization Felleman and van Essen [1991], Grill-Spector
and Malach [2004] and its use of predictive processing Rao and Ballard [1999], de Lange et al.
[2018].

This paper seeks to bridge the gap between the brute-force pattern matching of modern CNNs and the
geometrically-aware, structured inference of the brain. We propose VCNet, a novel neural network
whose macro-architecture is derived from the primate visual cortex. We go beyond mere biomimicry
and interpret the cortex’s organization as a computational framework for learning geometrically
sound representations. Our work is guided by the thesis that principles of symmetry and geometry
can illuminate the foundations of intelligence. Our contributions are threefold:

• We introduce VCNet, a deep neural network architecture that models the high-level informa-
tion flow between major areas of the visual cortex. We provide a geometric interpretation
of its core components, including dual-stream processing for manifold disentanglement,
recurrent connections for representation dynamics, and top-down predictive feedback as a
mechanism for geometric refinement on these manifolds.

• We demonstrate the efficacy of VCNet on the Spots-10 animal pattern benchmark. This
task is selected to test our bio-inspired architecture on a problem that mirrors a key evolution-
ary pressure for vision, and we show that VCNet outperforms other models of comparable
size.

• We further evaluate VCNet on a light field image classification task, providing evidence
that its geometrically-motivated design is particularly well-suited for processing richer,
multi-view data that more closely approximates the input to the human visual system.

2 Related Work

Our research is situated at the confluence of geometric deep learning, computational neuroscience,
and neuro-inspired AI.

Geometric Deep Learning and Equivariance Geometric deep learning seeks to incorporate
geometric priors and symmetries into neural network architectures Bronstein et al. [2021]. A
significant focus has been on achieving equivariance to groups of transformations beyond translation.
Steerable CNNs Cohen and Welling [2017] and E(2)-equivariant CNNs Maurice Weiler [2019]
generalize convolutions to handle rotation and reflection, leading to improved data efficiency and
generalization on tasks with these underlying symmetries. Graph Neural Networks (GNNs) extend
these ideas to data defined on non-Euclidean domains like graphs and manifolds. While these
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approaches enforce geometric constraints at the micro-level of individual filters or operations, VCNet
takes a complementary, macro-level approach. We do not engineer specific filter symmetries; instead,
we hypothesize that the high-level architectural organization of the visual cortex itself, its network
topology of processing streams and feedback loops, creates an inductive bias that guides the learning
process toward geometrically structured representations.

Neuro-Inspired Architectures The brain has long been a source of inspiration for artificial intelli-
gence. Early models like the Neocognitron Fukushima [1980] laid the groundwork for modern CNNs
by mimicking the simple and complex cells of V1. More recently, models like CorNet Kubilius et al.
[2019] have sought to create architectures that not only perform well but also whose internal activa-
tions correlate with neural recordings from the primate brain. These models often focus on replicating
the feedforward ventral stream. VCNet differentiates itself by modeling a more comprehensive set of
cortical principles: (1) the explicit separation and interaction of the ventral and dorsal streams, (2)
the inclusion of recurrent dynamics to model iterative processing, and (3) the implementation of a
top-down predictive coding loop, which we argue is critical for robust, generative understanding.

Predictive Coding and Generative Models Predictive coding posits that the brain is fundamentally
a generative model of its environment Rao and Ballard [1999]. Higher cortical areas generate
predictions about lower-level sensory input, and only the residual error between the prediction and
the actual input is propagated forward. This principle is computationally efficient and has deep
connections to Bayesian inference and the free-energy principle Friston [2010]. In machine learning,
this resonates with the objectives of generative models like Variational Autoencoders (VAEs) and
Helmholtz machines, which learn a latent generative model of the data. Our implementation of
predictive coding in VCNet serves a similar purpose, encouraging the network to learn an internal
model of the visual world. By framing this process geometrically, we view the prediction error as a
vector in the tangent space of a learned representation manifold, driving the model’s state along a
geodesic toward a more accurate representation.

3 The VCNet Architecture: A Geometric Interpretation

While a complete replication of the visual system is infeasible, our research focuses on emulating
the macro-scale organization of the visual cortex. We interpret its connectivity and computational
patterns not as an arbitrary biological arrangement, but as a sophisticated framework for learning and
processing geometric information. VCNet is a deep neural architecture engineered to operationalize
these principles.

3.1 Biologically-Inspired Geometric Principles

Our model’s design is predicated on three foundational principles of primate vision, which we
reformulate in the language of geometry and dynamics.

Hierarchical Processing as Compositional Feature Geometry Visual information propagates
from the retina through a hierarchy of cortical areas (V1, V2, V3, V4, V5), each specialized for
extracting progressively complex features Huff et al. [2023]. V1 detects simple elements like
oriented edges, which can be understood as recognizing local Euclidean symmetries (translations and
rotations of local patterns). It projects to V2, which processes intermediate features like contours and
textures. V2, in turn, projects to higher-order areas like V4 and V5. We interpret this hierarchy not
merely as a cascade of feature extractors, but as a sequence of learned, non-linear transformations
ϕi : Mi−1 → Mi that map representations from one manifold Mi−1 to another Mi. Each stage
aims to create a new representation that is more abstract, more disentangled, and more useful for
the organism’s goals. The final representation should ideally live on a manifold where semantic
categories are linearly separable.

Dual-Stream Processing as Manifold Disentanglement The visual cortex is famously organized
into two primary processing pathways Sheth and Young [2016]. The ventral stream ("what" pathway)
is responsible for object recognition, while the dorsal stream ("where/how" pathway) handles spatial
awareness and motion analysis. We propose a geometric interpretation: these two streams learn
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Figure 1: A high-level model of information pathways in the primate visual cortex, illustrating the
hierarchical series of feature extraction stages Fulton [2001]. This organization forms the architectural
basis of VCNet, which we interpret as a graph of transformations between representation manifolds.

to project the high-dimensional sensory input onto two distinct, yet correlated, low-dimensional
manifolds.

• The ventral stream learns an identity manifold, Mid. The goal is to learn a representation
that is invariant to changes in pose, illumination, and position. Points on this manifold
correspond to object identities.

• The dorsal stream learns a pose/motion manifold, Mpose. The goal here is to learn a
representation that is equivariant to changes in object position and orientation. Points on
this manifold correspond to spatial properties.

By explicitly separating these tasks into different architectural pathways, the model is encouraged
to learn disentangled representations, a key goal in representation learning. The interconnections
between the streams allow the model to bind "what" information with "where" information.

Predictive Coding as Geodesic Refinement on a Manifold The visual cortex is not a purely
feedforward system. It employs predictive coding, where higher-level areas send top-down predictions
to lower-level areas Lowet and Uchida [2024]. We formalize this as a process of refinement on a
representation manifold. Let zL be a representation in a high-level area (e.g., AIT). The network
learns a top-down mapping p(zl|zL) that generates a prediction of the representation zl in a lower-
level area (e.g., V1). The bottom-up processing provides the actual sensory evidence, resulting in an
observed representation zobsl . The discrepancy, or prediction error ϵ, is computed:

ϵ = zobsl − p(zl|zL)
This error signal is not just noise; it is a vector in the tangent space of the lower-level manifold Ml.
This vector indicates the direction in which the higher-level representation zL needs to be updated to
better explain the sensory data. The learning process, which aims to minimize this error over time
and data, can be viewed as an optimization process that encourages the model’s internal generative
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trajectory to follow a geodesic on the manifold of plausible world states. This creates a powerful
dynamical system for inference and learning.

3.2 Architectural Framework of VCNet

Departing from conventional, monolithic CNN architectures, VCNet is structured as a directed graph
that models the known connectivity between the major visual cortical areas. The channel capacity of
each module is scaled to approximate the relative neuronal populations in its biological counterpart.

Ventral Stream This "what" pathway models object recognition, progressing from V1 through
modules representing V2 (Interstripe, Thin Stripe), V4, and the inferotemporal (PIT, CIT, AIT)
cortices. It is specialized for learning the invariant identity manifold.

Dorsal Stream This "where/how" pathway models spatial and motion analysis, flowing from V1
through V2 (Thick Stripe), the middle temporal (MT) and medial superior temporal (MST) areas,
and onward to parietal regions. It is specialized for learning the equivariant pose/motion manifold.

These streams are interconnected at multiple levels, enabling the integration of object identity with
spatial information. The final representation is formed in the AIT module, which receives convergent
inputs and feeds into the classification layer. VCNet’s functionality is realized through several
specialized computational blocks, each with a geometric interpretation.

3.2.1 Multi-Scale Feature Extraction (V1)

Implementation: To emulate the diverse receptive field sizes in V1, the module processes input
through three parallel depthwise separable convolution streams with different kernel sizes (3x3, 5x5,
7x7). The resulting feature maps are concatenated. Geometric Interpretation: This block acts as
a multi-scale probe of the local geometry of the input signal. Different kernel sizes are sensitive to
structures at different frequencies and scales, akin to a wavelet decomposition. This provides a rich,
multi-scale initial representation that captures the geometry of the input space more effectively than a
single-scale approach.

3.2.2 Recurrent Processing Blocks (MT/MST)

Implementation: To model the iterative refinement of representations, the MT and MST modules
incorporate Recurrent Blocks. These blocks apply a convolutional transformation with shared weights
for a fixed number of iterations (t = 3), with each iteration receiving the output of the previous
one plus a residual connection from the initial input. Geometric Interpretation: This recurrent
application of a transformation defines a discrete-time dynamical system on the feature space. The
representation zt at iteration t evolves according to zt+1 = f(zt) + z0. The recurrence allows the
representation to iteratively converge toward a stable fixed point on its manifold, effectively refining
the estimate of motion or spatial properties over time.

3.2.3 Attentional Modulation (CBAM)

Implementation: To emulate the brain’s ability to focus on salient features, key modules (V1,
MT, V4) incorporate a Convolutional Block Attention Module (CBAM). CBAM sequentially infers
and applies channel-wise and spatial attention maps. Geometric Interpretation: Attention can
be viewed as a mechanism for dynamically selecting a relevant subspace of the feature manifold.
Channel attention re-weights the contribution of different feature dimensions, effectively stretching
or shrinking the manifold along certain axes. Spatial attention re-weights different locations, focusing
computational resources on a specific region of the manifold’s domain (the image space).

3.2.4 Lateral Interaction Module (V1)

Implementation: The V1 module includes a Lateral Interaction block, implemented as a convolution
followed by channel-wise self-attention within a residual connection. Geometric Interpretation:
This simulates the horizontal connections within cortical layers that mediate contextual effects like
lateral inhibition. Geometrically, this enforces local consistency constraints on the feature manifold.
It encourages nearby points in the image space to have related representations, promoting smoothness
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and helping to form coherent structures like contours, which can be seen as enforcing a local group
structure.

3.2.5 Predictive Coding Loop (AIT to V1)

Implementation: We implement predictive coding via a top-down connection from the highest
level of the ventral stream (AIT) back to V1. The AIT module generates a prediction of V1 feature
activations. This prediction is subtracted from the actual bottom-up V1 activity to compute a
prediction error, ϵ = ReLU(V1bottom-up − AITtop-down). This error signal is then used as an additional
learning signal. Geometric Interpretation: This is the core of our geometric dynamical system.
The top-down signal from AIT is a hypothesis about the world, projected back onto the low-level
V1 feature manifold. The bottom-up signal is the evidence. The error ϵ is a vector field on the
V1 manifold that drives the learning process, forcing the high-level AIT manifold to generate
representations that are consistent with the low-level sensory data. This process refines the entire
hierarchy of representational geometries.

3.2.6 Neuromodulatory Gating

Implementation: To model the global gain control exerted by neuromodulators, we introduce a
Neuromodulation block in key modules (V1, MT, V4). This block applies a learnable, channel-wise
multiplicative scaling factor to feature maps. Geometric Interpretation: This mechanism can
be interpreted as controlling the local curvature or metric of the representation manifold. A high
gain (scaling factor > 1) could increase the sensitivity of the representation to small input changes
(increasing curvature), while a low gain (scaling factor < 1) could promote invariance by flattening
the manifold locally. This allows the network to adapt its representational geometry based on context.

4 Experiments and Results

We benchmarked VCNet’s performance against contemporary neural networks of comparable size to
assess its image classification capabilities. We chose datasets and tasks that are particularly relevant
to the evolution and function of biological vision and that test the geometric principles embedded in
our architecture.

4.1 Experimental Setup

All models were trained using the Adam optimizer Kingma and Ba [2015] with a learning rate of
10−3. We used a batch size of 16 and applied standard data augmentation techniques, including
random horizontal flips and random rotations. All experiments were conducted using Google Colab
Google.

4.2 Experiment 1: Animal Pattern Classification

Motivation Key evolutionary drivers for primate vision include finding food and avoiding predators,
tasks that rely heavily on recognizing natural patterns and textures Kaas [2012]. The primate visual
cortex is thus highly optimized for this purpose. We therefore evaluated our biologically-inspired
model on a benchmark focused on classifying animal patterns, which tests the model’s ability to learn
representations of complex, semi-structured textures.

Methodology We utilized the Spots-10 dataset, which contains 50,000 grayscale 32x32 pixel
images across 10 classes of animal patterns Atanbori [2024]. We trained VCNet Mini and compared
its performance against a suite of established models whose weights were derived via knowledge
distillation, making them highly compact and efficient. To ensure a consistent evaluation of conver-
gence, all baseline models were finetuned on Spots-10 for the same number of epochs that VCNet
Mini was trained.

Results As shown in Table 1, VCNet Mini attains the highest accuracy on Spots-10 (92.08%),
outperforming the strongest baseline (DenseNet121 Distiller, 81.84%) by a significant margin of
10.24 percentage points. To ensure a fair comparison with the lightweight distilled baselines,
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Table 1: Test accuracy and model size on the Spots-10 benchmark. Best values are in bold. VCNet
Mini demonstrates superior accuracy with significantly fewer parameters, highlighting the efficiency
of its architectural priors.

Model Test Accuracy (%) Model Size (MB)
VCNet Mini (Ours) 92.08 0.04
DenseNet121 Distiller 81.84 0.07
ResNet101V2 Distiller 80.29 0.07
ResNet50V2 Distiller 79.03 0.07
MobileNet Distiller 78.26 0.07
MobileNetV3-Small Distiller 78.04 0.07

we reduced VCNet’s hidden-layer widths to form the Mini variant. Remarkably, VCNet Mini
achieves this superior performance while using only 0.04 MB of storage, about 43% smaller than
the 0.07 MB baselines. These findings strongly indicate that architectures inspired by the geometric
and computational principles of the visual cortex can yield models that are both highly accurate and
extremely parameter-efficient.

4.3 Experiment 2: Light Field Classification

Motivation Standard 2D images are flat projections of the 3D world, discarding vast amounts of
visual information related to depth, parallax, and view-dependent reflectance. The human visual
system (HVS) processes a much richer input, leveraging binocular vision and eye movements to
interpret a subset of the 7D plenoptic function Adelson and Bergen [1991]. Light field cameras, which
capture both the intensity and the angular direction of light rays, provide data that is a much closer
analogue to the input processed by the HVS Lin et al. [2024]. We hypothesize that an architecture
designed to emulate the visual cortex’s dual-stream, geometrically-aware processing will demonstrate
superior performance on this richer data modality.

Methodology We evaluated VCNet on a light field image classification task using a standard dataset
Raj et al. [2016]. The light field data was processed into a 4D tensor, which was then fed into the
models. We compared its performance against benchmark models: ResNet18, VGG11 with Batch
Normalization, and MobileNetV2. These baselines were pre-trained on ImageNet and finetuned for
the same number of epochs as VCNet was trained.

Table 2: Performance and Size Comparison on Light Field Image Classification. VCNet achieves the
highest accuracy while being the most compact model, demonstrating its suitability for processing
higher-dimensional, geometrically rich visual data.

Model Test Accuracy (%) Model Size (MB)
VCNet (Ours) 74.42 3.52
MobileNetV2 72.09 8.66
ResNet18 65.12 42.69
VGG11_BN 51.16 491.39

Results The results, summarized in Table 2, highlight VCNet’s superior performance and efficiency.
VCNet achieved the highest test accuracy (74.42%) while maintaining a minimal model size of 3.52
MB. This is over twice as small as MobileNetV2, over ten times smaller than ResNet18, and over
100 times smaller than VGG11. This result validates our hypothesis that an architecture incorporating
principles like dual-stream processing and predictive feedback is particularly effective for processing
high-dimensional visual data that contains both object identity and spatial/viewpoint information.

5 Conclusion and Future Work

In this work, we introduced VCNet, an architecture guided by the computational principles and
anatomical organization of the primate visual cortex. By interpreting these principles through the lens
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of geometry and dynamical systems, framing dual-stream processing as manifold disentanglement
and predictive coding as geodesic refinement, we developed a model that demonstrates superior
performance and parameter efficiency on challenging image classification tasks. Our findings
underscore the significant potential of this approach: by embedding high-level geometric priors into
the macro-architecture of a network, we can guide it to learn more robust and efficient representations.
This convergence of disciplines not only offers a path toward more capable artificial systems but also
provides computational frameworks for testing hypotheses about brain function.

Our model opens several avenues for future research.

• Integrating Explicit Equivariance: A powerful next step would be to combine our macro-
scale geometric approach with the micro-scale constraints of geometric deep learning.
Incorporating steerable filters into the V1 module could enforce explicit rotation and scale
equivariance at the lowest level, which could then be integrated into the global representa-
tions of the full VCNet architecture.

• Topological Data Analysis (TDA): The geometric structure of the learned manifolds could
be more formally analyzed using tools from TDA. We could use persistent homology to
quantify the topological structure of the representations, testing the hypothesis that better
representations have simpler topology (e.g., one connected component per class with no
spurious holes).

• Extension to Spatio-Temporal Dynamics: The current model is designed for static images.
Extending it to video processing is a natural progression. The dorsal stream and recur-
rent dynamics would become even more critical for modeling the flow of information on
spatio-temporal manifolds, potentially leading to more robust action recognition and video
prediction models.

• Geometric Principles in Language: Finally, it is worth speculating whether the principles
of hierarchical, predictive, and geometrically structured representations could be applied to
other modalities. Understanding the geometry of representations in large language models is
a burgeoning field, and concepts like dual-stream processing (e.g., for syntax vs. semantics)
and predictive refinement could offer valuable new architectural ideas.
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