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Abstract

Robust coordination is critical for effective decision-making in multi-agent sys-
tems, especially under partial observability. A central question in Multi-Agent
Reinforcement Learning (MARL) is whether to engineer communication protocols
or learn them end-to-end. We investigate this dichotomy using embodied world
models. We propose and compare two communication strategies for a cooperative
task-allocation problem. The first, Learned Direct Communication (LDC), learns a
protocol end-to-end. The second, Intention Communication, uses an engineered
inductive bias: a compact, learned world model, the Imagined Trajectory Gen-
eration Module (ITGM), which uses the agent’s own policy to simulate future
states. A Message Generation Network (MGN) then compresses this plan into a
message. We evaluate these approaches on goal-directed interaction in a grid world,
a canonical abstraction for embodied AI problems, while scaling environmental
complexity. Our experiments reveal that while emergent communication is viable
in simple settings, the engineered, world model-based approach shows superior
performance, sample efficiency, and scalability as complexity increases. These
findings advocate for integrating structured, predictive models into MARL agents
to enable active, goal-driven coordination.

1 Introduction

Embodied artificial intelligence seeks to create agents that understand, predict, and interact with the
physical world to achieve complex goals. The ability of multiple agents to coordinate is paramount
in applications from autonomous driving to warehouse robotics [Vincent, 2024, Anglen, 2024].
However, multi-agent coordination is a formidable challenge for reinforcement learning. For any
single agent, the environment is non-stationary because other agents’ actions alter the state transition
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dynamics, violating the Markov property central to many single-agent algorithms [Kefan et al., 2024].
This non-stationarity makes learning a stable policy or accurate world model exceedingly difficult.

Communication can mitigate this challenge. By exchanging information, agents can synchronize
knowledge, align intentions, and make their behavior more predictable, restoring a degree of sta-
tionarity [Ming et al., 2024]. This raises a key question: what is the most effective way to design a
communication protocol for decentralized, cooperative agents?

One approach is emergent communication, where agents learn a protocol from scratch via environ-
mental rewards. This approach is general, requires no hand-engineered features, and may discover
novel, efficient encoding schemes. A contrasting approach is engineered communication, where
protocols have strong inductive biases that structure message content. This approach posits that for
complex coordination, a scaffold for reasoning and communication is more sample-efficient and
scalable.

This paper explores this trade-off using world models. We reframe the debate as a comparison
between implicit versus explicit world modeling for decision-making. Can agents implicitly model
each other’s intentions and future behavior through an unstructured, emergent protocol? Or is it more
effective to give agents an explicit world model and engineer communication to share its outputs?

To investigate these questions, we focus on a canonical multi-agent coordination problem: cooperative
task allocation in a partially observable grid world. Two agents must navigate to two distinct goals,
requiring them to resolve ambiguity and avoid conflict. We introduce and compare two approaches:

1. Learned Direct Communication (LDC): An end-to-end approach where policy networks
produce both an action and a low-bandwidth message. The message’s meaning is entirely
emergent.

2. Intention Communication: An engineered approach where each agent has a lightweight,
learned world model, the Imagined Trajectory Generation Module (ITGM), that performs
a short-horizon "mental simulation" of its future trajectory. A Message Generation Network
(MGN) then compresses this simulated plan into a message, communicating the agent’s
intent.

We investigate how world models can benefit model-based reinforcement learning and long-horizon
planning, even at a small scale. We show how a predictive model enables agents to perform active,
goal-driven interaction rather than passive reaction. Our results, obtained under computational
constraints, underscore the importance of sample efficiency and scalability for real-world deployment.
We find that while emergent communication shows some success, the structured, predictive nature of
Intention Communication leads to superior performance, robustness, and scalability. This suggests
that for complex, embodied coordination, the inductive biases of an explicit world model are essential.

2 Related Work

Our research builds on three areas: emergent communication in MARL, model-based reinforcement
learning with world models, and multi-agent planning.

2.1 Emergent Communication in Multi-Agent Reinforcement Learning

Agents learning their own communication protocols has a rich history. Early work like DIAL
[Foerster et al., 2016] and CommNet [Sukhbaatar et al., 2016] showed that agents could learn to
pass messages to solve cooperative tasks. DIAL showed that gradients could be passed through
communication channels, while CommNet introduced a centralized module to pool communications.
These approaches treated messages as latent vectors, with the protocol’s semantics emerging from
optimizing the task reward. RIAL [Foerster et al., 2016] extended this to independent Q-learners.
More recent work has explored these emergent languages’ properties, such as their compositionality
and ability to generalize [Mordatch and Abbeel, 2018].

However, these methods often require high sample complexity to establish a meaningful protocol.
The sparse and noisy environmental learning signal makes credit assignment for messages difficult.
Furthermore, emergent protocols are often brittle and lack interpretability, making them hard to
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debug or trust. Our LDC model represents this paradigm, testing the limits of pure emergence in a
resource-constrained setting.

2.2 Model-Based Reinforcement Learning and World Models

Model-Based Reinforcement Learning (MBRL) improves sample efficiency by learning a model of
the environment’s dynamics. This "world model" can then be used for planning, policy improvement,
or data augmentation. A prominent research area is learning these world models in a latent space,
which is more scalable and robust than predicting raw sensory inputs.

The Dreamer family of algorithms [Hafner et al., 2020, 2021, 2023] are state-of-the-art, learning
a recurrent state-space model (RSSM) to predict future latent states and rewards. Policies are then
trained entirely within the "dream" of this learned world model. These models have succeeded in
single-agent, long-horizon tasks, showing that an accurate world model can replace real environment
interaction.

Our Intention Communication approach is inspired by this paradigm. The Imagined Trajectory
Generation Module (ITGM) is a simplified, computationally inexpensive world model. While less
sophisticated than an RSSM, it captures the core principle of learning a predictive model to enable
forward-looking decisions. We adapt this to the multi-agent context, positing that a world model’s
output is useful not only for an agent’s own planning but also as an ideal substrate for communication.

2.3 Planning and Intention in Multi-Agent Systems

Effective coordination requires reasoning about others’ future actions and intentions. Some MARL
approaches explicitly model teammate policies [Raileanu et al., 2018], but this can be challenging
with many agents or complex policies.

An alternative is for agents to communicate their plans directly. This has been explored in classic AI
planning and, more recently, deep learning. For example, [Liu et al., 2021] proposed sharing planned
trajectories to improve coordination in autonomous driving. By making plans explicit, agents can
anticipate and avoid conflicts, simplifying coordination.

Our Intention Communication model operationalizes this concept. The ITGM’s "imagined trajectory"
is a proxy for the agent’s short-term plan. By compressing this trajectory into a message, an agent
gives its teammate a rich, forward-looking signal far more informative than a single action or goal
declaration. This transforms the problem from inferring intent from low-level actions to directly
incorporating a teammate’s plan into one’s own decision-making. This explicit sharing of world
model outputs moves beyond passive prediction towards goal-directed interaction.

3 Problem Formulation and Experimental Environment

We formalize our cooperative task as a Decentralized Partially Observable Markov Decision Process
(Dec-POMDP) and detail our experimental environment.

3.1 Dec-POMDP Formulation

A Dec-POMDP is a tuple (I,S, {Ai}i∈I , T,R, {Ωi}i∈I , O), where:

• I = {1, ..., N} is the set of N agents. In our case, N = 2.
• S is the set of environment states. A state s ∈ S defines the coordinates of both agents and

both goals.
• Ai is the set of actions available to agent i. Agents collectively take a joint action a =
(a1, ..., aN ) ∈ A = ×i∈IAi.

• T (s′|s,a) is the state transition function, which is deterministic in our setup.
• R(s,a) is the shared reward function for the team.
• Ωi is the set of observations for agent i.
• O(o|s,a) is the observation function, determining the probability of agent i receiving

observation oi ∈ Ωi after joint action a leads to state s′.
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Each agent i learns a policy πi(ai|hi) mapping its history hi to an action ai to maximize the
expected discounted team reward E[

∑T
t=0 γ

tR(st,at)]. With communication, the policy becomes
πi(ai|hi,mt−1), conditioned on received messages.

3.2 Experimental Environment

We use a simple, deterministic grid world as a controlled testbed. This canonical environment isolates
the communication protocol’s effects from confounding factors like complex physics or stochasticity.
Its simplicity is a feature, enabling us to probe the challenges of coordination and scalability.

Setup The environment is an X ×X grid containing two agents and two goals, each occupying a
unique cell. For our experiments, X is varied to test scalability (e.g., 6, 10, 15). We use the PettingZoo
library [Terry et al., 2021] for its flexible MARL API. All experiments were run on Google Colab, a
resource-constrained platform that prioritizes sample efficiency and model compactness.

Actions At each discrete timestep, an agent can choose one of five actions: ‘stay‘, ‘up‘, ‘down‘,
‘left‘, or ‘right‘.

Observations We examine two settings. Fully Observable: Each agent receives the global state:
its own coordinates, its teammate’s coordinates, and both goal coordinates. To break symmetry and
prevent static goal assignments, the order of goal coordinates in the observation vector is randomized
for one agent. Partially Observable: Each agent observes its own absolute coordinates and those
of any object (teammate or goal) within its vision_range. This locality makes communication
essential for global coordination.

To provide minimal memory, the policy network input is a stack of the last four observations.

Task and Reward Scheme The cooperative task is for both agents to occupy the two distinct goals.
The shared reward encourages this outcome efficiently:

• +1.0 for success (both agents on different goals).
• −0.10 penalty for collision (both agents on the same goal).
• −0.01 per-step time penalty to incentivize efficient paths.

Episode Structure Each episode begins with agents and goals placed randomly on distinct cells.
An episode terminates upon success or after 200 timesteps.

Figure 1: A visualization of the 6× 6 grid world environment with two agents (blue and red) and two
goals (green squares).

3.3 Training Framework

We use an on-policy Advantage Actor-Critic (A2c) algorithm with a learned baseline [Sutton and
Barto, 2018, Konda and Tsitsiklis, 1999]. The actor and critic are separate neural networks with
shared initial layers. Updates are performed at the end of each episode. We use a linear learning rate
decay schedule to balance exploration and exploitation. The learning rate lre for a given episode e is
calculated as:

lre = lr0

(
1− e

Etotal

)
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where lr0 is the initial learning rate and Etotal is the total number of training episodes. This schedule,
clipped at a minimum value of 1× 10−5, allows for larger updates early in training and fine-tuning
updates later, preventing catastrophic forgetting.

4 Approach 1: Emergent Communication via Latent Messaging

Our first approach, Learned Direct Communication (LDC), embodies the principle of emergent
communication. We create a minimal framework for information exchange, imposing no structure
on message content or meaning. The protocol emerges end-to-end, driven only by the shared task
reward.

4.1 Architecture and Information Flow

In LDC, each agent’s policy network πθi outputs both an action and a message:
πθi(a

(i)
t ,m

(i)
t |o(i)t ,m

(j)
t−1), where j ̸= i. We keep the message space minimal to facilitate learn-

ing: a single binary value, m(i)
t ∈ {0, 1}. The network outputs logits for the action (passed through

softmax) and message (passed through sigmoid). During training, both are sampled. The message
m

(i)
t is broadcast to agent j for use at timestep t+ 1. The entire system is trained end-to-end, with

gradients from the shared task reward shaping both the policy and the protocol. The detailed network
architecture for Learned Direct Communication is depicted in figure 2.

Figure 2: The LDC architecture. Each agent’s policy network takes its local observation and the
incoming message from the previous timestep to produce an action and an outgoing message for the
next timestep. The critic network estimates the state value.

4.2 Hypothesis and Expected Behavior

The hypothesis is that agents can encode crucial information into the binary message. For instance, ’0’
might emerge to mean "I am targeting the first goal," and ’1’ might mean "I am targeting the second."
This convention would let agents resolve ambiguity and head to different goals. The approach is
flexible; agents can discover any protocol, possibly one more efficient than a human-designed one.
The challenge, however, is this unguided discovery process relies on a weak, delayed reward signal to
shape the complex joint space of policies and protocols.

4.3 Experimental Analysis in Fully Observable Setting

To validate if LDC could produce meaningful communication, we first tested it in a fully observable
6× 6 grid. With complete goal information, communication’s primary role is to break symmetry and
coordinate goal selection.
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4.3.1 Conditional Probability Study

After training, we analyzed the protocol by examining the conditional probability of an agent’s
action given a received message. As shown in Tables 1 and 2, the distributions are clearly distinct.
For example, Agent 1 is almost three times more likely to move ‘Up‘ when receiving message ‘0‘
(13.54%) compared to message ‘1‘ (4.53%). This strong statistical dependency indicates the messages
convey information that systematically influences the recipient’s behavior.

Table 1: Agent 1’s Action Probabilities Conditioned on Agent 2’s Message

Action

Message Stay Left Right Up Down

0 31.47% 16.98% 19.21% 13.54% 18.80%
1 33.95% 22.86% 14.76% 4.53% 23.90%

Table 2: Agent 2’s Action Probabilities Conditioned on Agent 1’s Message

Action

Message Stay Left Right Up Down

0 13.04% 21.61% 38.08% 22.83% 4.44%
1 13.81% 24.55% 29.18% 24.75% 7.71%

4.3.2 Ablation Study

To establish a causal link, we conducted an ablation study. We took a fully trained LDC policy and,
during evaluation, replaced all transmitted messages with a constant value (‘0‘). As shown in Table 3,
ablating communication caused a discernible drop in success rate and a slight increase in average
steps to completion. This confirms the messages are actively used for more effective coordination,
not just correlated with behavior.

Table 3: LDC Performance With and Without Communication (Fully Observable, 6× 6 Grid)

Condition Success Rate Average Steps

With Emergent Messages 89.4% 4.39
Messages Ablated (Set to 0) 88.6% 4.43

4.4 Performance under Partial Observability

We then used a more challenging partially observable setting (vision_range = 3 in a 6× 6 grid).
Here, communication is for both coordination and sharing information about the unseen world. As
shown in Table 4, the success rate drops for both conditions, as agents must now explore. However,
the performance gap widens, with communication providing a more significant relative benefit. This
shows that as the need for information sharing increases, so does the emergent protocol’s value.

While LDC demonstrates emergent communication, its performance in simple settings hints at scaling
challenges, motivating our second, more structured approach.

5 Approach 2: Intention Communication via Latent World Models

To address the limitations of emergent protocols, we designed Intention Communication, an archi-
tecture with strong inductive biases for forward-looking coordination. The core idea is for agents
to share explicit information about their future plans, allowing their teammates to anticipate their
behavior and avoid conflicts [Liu et al., 2021]. This is operationalized through a two-stage process:
an agent first generates an internal mental simulation of its future trajectory, and then compresses this
plan into a message for its teammate.
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Table 4: LDC Performance With and Without Communication (Partially Observable, 6× 6 Grid)

Condition Success Rate

With Emergent Messages 31.89%
Messages Ablated (Set to 0) 30.26%

5.1 Imagined Trajectory Generation Module (ITGM): A Latent World Model

The ITGM serves as a compact, learned module to generate a plan. It combines a learned latent
world model with the agent’s own policy to generate a short-term forecast. Its objective is to simulate
a future trajectory that would result from following its current policy. This policy-conditioned
simulation provides the raw material for forming an intention. The process is as follows.

Initial State Encoding: At timestep t, the module first takes the agent’s current local observation
o
(i)
t (a (4× F )-dimensional vector with F = 4) and the received message from its teammate in the

previous step, m(j)
t−1. (This message m

(j)
t−1 is first embedded and flattened into a fixed-length vector).

These are concatenated and passed through a linear encoder to produce an initial Dhidden-dimensional
latent state vector, z(i)t : z(i)t = ReLU(Wenc[o

(i)
t ⊕ embed(m(j)

t−1)] + benc).

where ⊕ denotes vector concatenation. This initial state z(i)t represents a compressed summary of the
agent’s current knowledge and serves as the starting point for the plan.

Latent Rollout: The ITGM generates the plan by unrolling a trajectory for a fixed horizon H . This
rollout actively uses the agent’s own policy head (πact) and a learned latent transition model (ftrans).
This transition model is a network (e.g., an MLP) that predicts the next latent state given the current
latent state and a *planned action*.

For each step k in the horizon (k = 0, . . . ,H − 1), a planned action is sampled from the agent’s
policy and used by the latent transition model to predict the next state. This iterative process is
implemented as follows, where embed(·) is an action embedding layer and πact is the same policy
head used to select the agent’s real action:

ãt+k ∼ πact(·|z(i)t+k)

z
(i)
t+k+1 = ReLU(Wtrans[z

(i)
t+k ⊕ embed(ãt+k)] + btrans)

This iterative process generates a sequence of predicted future latent states, which forms the plan (the
policy-conditioned trajectory): τ (i) = ⟨z(i)t+1, z

(i)
t+2, . . . , z

(i)
t+H⟩.

This feed-forward design was chosen for its computational efficiency, which is critical given our
resource constraints. Both the encoder, the transition model, and the forward model are feed-forward
networks with Dhidden hidden units and ReLU activation functions.

5.2 Message Generation Network (MGN): Summarizing Intentions

The role of the MGN is to distill the high-dimensional plan (the latent trajectory τ (i)) into a compact,
fixed-length message vector m(i)

t that effectively summarizes the agent’s intention. A raw sequence of
latent states is too unwieldy to use as a direct communication signal. Instead, we use a self-attention
mechanism to identify and aggregate the most salient features of the planned trajectory.

We employ a multi-head self-attention mechanism [Vaswani et al., 2017] with Nheads head(s) and a
Dhidden-dimensional embedding to compute a weighted summary of the trajectory sequence. The
sequence τ (i) serves as the query, key, and value inputs:Q = τ (i)WQ, K = τ (i)WK , V =

τ (i)WV . The attention mechanism produces an output sequence where each element is a weighted
sum of the values, with weights determined by the query-key similarities. This process allows the
network to learn which future steps in its imagined plan are most important for coordination (e.g., the
final destination, a potential point of conflict).

This attention output is aggregated via mean pooling to produce a single vector vpooled. This vector is
then passed through two hidden layers, h1 = ReLU(W1vpooled + b1) and h2 = ReLU(W2h1 + b2).
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To produce the message policy, h2 is fed into Ncomp separate linear heads. Each head k ∈ [1, Ncomp]

outputs a vector of Nsym logits: logits(k) = W
(k)
headh2 + b

(k)
head.

This defines Ncomp independent categorical distributions, π(k)
msg = Softmax(logits(k)), one for each

component of the message. This structured, multi-part discrete message is far more expressive than
the single bit used in LDC.

5.3 Integration and End-to-End Training

The ITGM and MGN modules are seamlessly integrated into the agent’s decision-making process.
The full forward pass for a single agent i at timestep t explicitly separates the action and message
generation to respect the constraint:

1. The agent receives its observation o
(i)
t and the previous message from its teammate, m(j)

t−1.

2. These inputs are encoded to produce the initial latent state z
(i)
t .

3. (Action Branch) The agent’s policy head computes the real action distribution using this
initial state: πact(a

(i)
t |z(i)t ). An action a

(i)
t is sampled.

4. (Plan/Message Branch) In parallel, the ITGM uses z(i)t as its starting point to generate the
plan τ (i) = ⟨z(i)t+1, . . . , z

(i)
t+H⟩. This rollout process re-uses the same policy head πact to

sample hypothetical future actions ãt+k at each step of the simulation.

5. The MGN processes the resulting plan τ (i) to output the Ncomp×Nsym logits for the Ncomp

message distributions π(k)
msg .

6. A message m(i)
t = ⟨m(1)

t , . . . ,m
(Ncomp)
t ⟩ is sampled by taking one symbol from each of the

Ncomp categorical distributions. This composite message vector is broadcast to its teammate
for use at step t+ 1.

7. The entire model is trained end-to-end using the A2C loss function. Gradients from the
Lactor term (specifically the At

∑
k log π

(k)
msg(m

(k)
t ) component) flow back to update the

weights of the MGN, its hidden layers, the ITGM’s transition model (Wtrans), and the
initial encoder (Wenc). The gradients from both the action (At log πact(at)) and message
terms also update the shared policy head πact.

The entire model is trained end-to-end using the A2C loss function, allowing gradients to flow back
through all modules.

6 Results and Analysis: The Superiority of Engineered World Models

To compare our approaches, we experimented in partially observable environments of increasing
scale. These experiments test each strategy’s limits on performance, scalability, and sample efficiency,
core metrics for embodied agents. Agents had a vision_range of 2 and a 200-step episode limit.

6.1 Scalability Showdown

We evaluated a non-communicating baseline, LDC, and Intention Communication in 10× 10 and
15 × 15 grids. The 15 × 15 environment’s state space is over 5 times larger, posing a significant
challenge. The results, summarized in Table 5, are stark.

The baseline model, without communication, fails to learn a successful policy. This is expected and
highlights the necessity of communication for this task. LDC achieves a 30.8% success rate in the
10 × 10 grid, showing an emergent protocol can provide some benefit. However, its performance
collapses to 12.2% in the larger 15×15 grid. The unstructured, low-bandwidth message is insufficient
for the increased complexity.

In contrast, Intention Communication achieves near-perfect success rates in both environments,
maintaining 96.5% performance in the 15× 15 setting. This result demonstrates the scalability of an
engineered, world model-based protocol.
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Table 5: Success Rates in Partially Observable Environments of Increasing Size

Environment Setting Communication Model Success Rate

10× 10 Baseline (No Communication) 0.0%
10× 10 Learned Direct Communication (LDC) 30.8%
10× 10 Intention Communication 99.9%
15× 15 Baseline (No Communication) 0.0%
15× 15 Learned Direct Communication (LDC) 12.2%
15× 15 Intention Communication 96.5%

6.2 Discussion: Why Do Engineered World Models Scale Better?

The performance gap is attributable to the quality and structure of the learning signal.

Decoupled Learning Problem: Intention Communication decouples the problem. The ITGM
learns a simple forward-dynamics model, while the policy learns to act given both agents’ plans. This
provides a richer, more stable learning signal than LDC.

Credit Assignment: In LDC, the agent must associate a single bit with a complex action sequence
from a delayed reward, making credit assignment immense. In Intention Communication, the
message is tied to the imagined trajectory. Gradients can more easily shape the planning (ITGM) and
summarization (MGN) modules to produce better messages.

Richness of Information: A single bit in LDC can only resolve binary ambiguity. The MGN’s
vector message, grounded in a trajectory, encodes richer information like direction and destination.
This allows for nuanced coordination, which is critical as complexity grows.

6.3 Implications for Sample Efficiency and Embodied AI

Notably, these results were achieved under significant computational constraints (Google Colab),
limiting training time and batch sizes. Intention Communication’s success here highlights its sample
efficiency. For embodied AI, where physical interaction is costly, sample efficiency is a fundamental
requirement. Our work strongly suggests that giving agents predictive world models and structuring
communication around them is an effective strategy for creating sample-efficient and scalable multi-
agent systems. It shows that for complex coordination, engineered biases are more effective than
purely emergent protocols.

7 Conclusion and Future Work

We compared emergent and engineered communication for cooperative multi-agent decision-making,
using the lens of embodied world models. We introduced LDC, where a protocol emerges from
scratch, and Intention Communication, where agents use a learned world model (ITGM) to plan and
communicate future trajectories.

Our results are clear. While LDC facilitates basic coordination in simple settings, it fails to scale
to larger, more complex, partially observable ones. In contrast, Intention Communication, with its
engineered inductive bias for prediction, shows exceptional performance, maintaining near-perfect
success rates as complexity increases. This highlights the impact of world models on performance,
scalability, and sample efficiency, critical factors for deploying embodied agents.

The central takeaway is that for robust, scalable coordination, an emergent protocol from a single,
unstructured reward signal is insufficient. Instead, giving agents explicit predictive models and
structuring their communication around the model outputs provides a more reliable foundation for
intelligent interaction.

This research opens several avenues for future work:
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Stochastic and Richer World Models: Our ITGM is simple and deterministic. Future work should
explore more sophisticated, stochastic world models (e.g., VAEs or Diffusion Models) that can
represent uncertainty. This would enable agents to communicate plans and confidence, leading to
more robust decisions under uncertainty.

From Grids to High-Fidelity Physics: The principles from our grid-world are a proof of concept.
The next step is applying these strategies to more complex embodied domains, such as robotic
manipulation in simulators like Isaac Gym or on real-world robotic teams, and investigating sim-to-
real transfer.

Adaptive Communication Protocols: While our protocol is structured, the message content is
learned. Future research could explore hybrid approaches where agents dynamically adjust the detail
in their communicated plans.

Scaling to Larger Teams: We focused on two agents. Scaling these models to larger, heterogeneous
teams presents a complex challenge.

Ultimately, our findings advocate for integrating learned, predictive world models as a cornerstone
of communication and decision-making for embodied AI, moving beyond a purely end-to-end
philosophy.
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A Technical Appendices and Supplementary Material

A.1 Exploration of LDC Fragility and Design Choices

We conducted supplementary experiments to better understand LDC’s limitations and sensitivities.
These findings underscore the difficulty of fostering stable emergent communication without strong
priors, especially under computational constraints.

Varying the Message Space Capacity: We hypothesized that the limited bandwidth of a single
binary message might be the bottleneck for LDC. We expanded the message capacity by increasing
the range of a single token and by allowing multiple tokens per timestep. Surprisingly, as shown in
Table 6, only configurations with a very low-dimensional message space (a single token with a range
of 0-1 or 0-2) reliably converged to a success rate >1%.

We theorize that a larger message space dramatically increases the dimensionality of the joint action-
observation space. This adds noise to the learning signal and exacerbates the credit assignment
problem, making convergence on a coherent protocol from a sparse reward nearly impossible.
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Table 6: Convergence Results for LDC with Varying Message Capacity

Message Range Message Count Per Step Converged to >1% Success Rate

0-1 1 Yes
0-1 2 No
0-1 4 No
0-1 10 No

0-2 1 No
0-2 2 No
0-2 4 No
0-1 10 No

0-4 1 No
0-4 2 No
0-4 4 No

0-9 1 No
0-9 2 No
0-9 4 No

0-99 1 No
0-99 2 No
0-99 4 No

Environment Observation Variations: We experimented with giving agents absolute, rather than
relative, grid coordinates, hoping for a more stable frame of reference. However, LDC policies
consistently failed to converge. We suspect this is because deriving directional information from
absolute coordinates requires extra computation, increasing the policy function’s complexity. The
increased variance in observations likely hindered learning a stable policy.

Explicitly Rewarding "Meaningful" Messages: To guide protocol learning, we tried adding an
intrinsic reward for "meaningful" messages, based on a message’s influence on the recipient’s value
function estimate. However, this reward shaping was difficult to tune. High coefficients destabilized
learning the primary task, while low coefficients had no effect. This highlights the challenge of
designing auxiliary rewards that align with the main task.

Forcing the Need for Communication: To create a scenario where communication was indispens-
able, we designed an environment where each agent could only see its teammate’s goal. Success is
impossible without information exchange. Even here, LDC failed to converge, further showing its
limitations in discovering strategies from scratch.

Network Architecture Variations: We explored various policy/value network architectures. Devia-
tions from our standard architecture (two 64-node hidden layers), whether larger or smaller, generally
resulted in longer training times or failure to converge. This suggests emergent communication
methods can be highly sensitive to hyperparameters, adding to their practical difficulty.

A.2 Conclusions from Additional Experiments

These experiments show emergent communication is a powerful but fragile phenomenon. Without
structured environments, rewards, and biases, effective protocols are exceedingly difficult to emerge,
especially under typical computational and sample constraints. The consistent success of Intention
Communication highlights the value of embedding structured, world model-based priors into agents
to achieve robust and sample-efficient learning.

A.3 Key Training and Architectural Hyperparameters

We share the hyperparameters used in this experiment for greater reproducability in table 7.
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Table 7: Key Training and Architectural Hyperparameters

Parameter Value

Training Hyperparameters
Initial LR (lr0) 1× 10−3

Final LR (lrf ) 1× 10−4

Discount Factor (γ) 0.99
Optimizer Adam [Kingma and Ba, 2014]
Critic Loss Coefficient (αc) 0.5
Max Episode Length (Tmax) 200

Architectural Hyperparameters (all)
Frame Stack (F ) 4
Hidden Dimension (Dhidden) 64
Hidden Layers (Nhidden) 2
Message Loss Coefficient (β) 0.1

Architectural Hyperparameters (Intention Communication)
ITGM Rollout Horizon (H) 3
Attention Heads (Nheads) 1
Message Components (Ncomp) 8
Symbol Vocabulary Size (Nsym) 8
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