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Abstract

Despite their success, understanding the internal cognitive processes of modern
deep neural networks remains a critical challenge, situated between high-level
behavioral evaluations and low-level mechanistic interpretability. Cognitive science,
which seeks to explain cognition in biological systems, offers a rich theoretical
foundation for bridging this gap. This paper introduces the Visual Cortex Network
(VCNet), a novel neural architecture designed as a computational testbed for
prominent cognitive theories of vision. VCNet explicitly operationalizes key
neuroscientific principles, including the hierarchical organization of distinct cortical
areas, dual-stream segregation of information, and top-down predictive feedback.
We evaluate VCNet’s emergent behaviors and processing capabilities on two
specialized benchmarks chosen to probe its architectural priors: the Spots-10
animal pattern dataset, which tests for evolutionarily relevant feature learning, and
the Stanford Light Field dataset, which examines the model’s ability to process
richer, more naturalistic visual data. Our results show that VCNet achieves state-
of-the-art performance, with classification accuracies of 92.08% on Spots-10 and
74.42% on the light field dataset, surpassing contemporary models of comparable
size. This work demonstrates how integrating principles of cognitive neuroscience
into network design can foster more robust and efficient visual processing, offering
a promising direction for building and interpreting more capable artificial vision
systems.

1 Introduction: Towards Cognitive Interpretability in Vision Models

The remarkable capabilities of contemporary deep learning models in image recognition are often
juxtaposed with fundamental limitations that hinder their broader applicability and trustworthiness.
These models frequently demand massive labeled datasets [Krizhevsky et al., 2012], struggle to
generalize to out-of-distribution examples [Sagawa et al., 2020], and are notoriously susceptible to
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adversarial attacks and partial occlusions [Liu et al., 2022]. These shortcomings highlight a crucial
gap in our understanding: we can measure what these models do, but it is much harder to explain
how they do it. This challenge calls for a shift in perspective, moving beyond purely behavioral
evaluations towards cognitive interpretability, the systematic interpretation of high-level cognition in
deep learning models.

The primate visual system, in stark contrast to current artificial systems, represents a paragon of
efficiency and robustness. Humans can learn from few examples [Lake et al., 2015], generalize across
novel contexts with ease [Geirhos et al., 2018], robustly perceive occluded objects [Hegdé et al., 2008],
and perform these feats with unparalleled energy efficiency [Lennie, 2003]. Cognitive science and
neuroscience have attributed these capabilities to specific architectural and computational principles
of the visual cortex, most notably its fine-grained hierarchical organization [Felleman and van Essen,
1991, Grill-Spector and Malach, 2004] and its use of predictive processing to build and maintain an
internal model of the world [Rao and Ballard, 1999, de Lange et al., 2018]. These principles offer not
just inspiration for new architectures, but a theoretical framework for understanding the algorithms
that support complex visual cognition.

In this work, we embrace this perspective by developing VCNet, a novel neural network whose
macro-architecture is explicitly derived from the primate visual cortex. We approach this not merely
as an engineering exercise to boost performance metrics, but as a form of computational cognitive
science. We seek to understand how embedding cognitive theories of vision into an architecture
influences the learning process and the resulting behaviors. Our contributions are framed through this
lens:

* We introduce VCNet, a deep neural network architecture that serves as a cognitive model,
operationalizing the high-level information flow between major visual cortical areas. This
includes implementing computational hypotheses about dual-stream processing, recurrent
computation, and, critically, top-down predictive feedback.

* We provide a behavioral account of VCNet by evaluating it on the Spots-10 animal pattern
benchmark. This task is chosen to probe the model’s inductive biases, testing the hypothesis
that an architecture shaped by evolutionary pressures for pattern recognition will exhibit
superior learning and generalization on such data.

* We present a processing account by further evaluating VCNet on the Stanford Light Field
dataset. This provides evidence that the model’s internal algorithms, inspired by the brain’s
handling of rich visual streams, are better suited for processing multi-view data that more
closely approximates the natural input to the human visual system.

2 Related Work

Our research is situated at the confluence of computational neuroscience and neuro-inspired Al

Neuro-Inspired Architectures The brain has long been a source of inspiration for artificial intelli-
gence. Models like CorNet [Kubilius et al., 2019] have sought to create architectures that not only
perform well but also whose internal activations correlate with neural recordings. These models often
focus on replicating the feedforward ventral stream. VCNet differentiates itself by modeling a more
comprehensive set of cortical principles: (1) the explicit separation and interaction of the ventral and
dorsal streams, (2) the inclusion of recurrent dynamics, and (3) the implementation of a top-down
predictive coding loop.

Predictive Coding and Generative Models Predictive coding posits that the brain is fundamentally
a generative model of its environment [Rao and Ballard, 1999]. Higher cortical areas generate
predictions about lower-level sensory input, and only the residual error is propagated forward. This
principle is computationally efficient and has deep connections to Bayesian inference [Friston, 2010].
Our implementation of predictive coding in VCNet serves a similar purpose, encouraging the network
to learn an internal model of the visual world.



3 The VCNet Architecture: A Computational Model of the Visual Cortex

While a complete, neuron-for-neuron replication of the visual system remains beyond our reach, our
research focuses on emulating the macro-scale organization and information flow within the visual
cortex. This architectural scaffolding, informed by decades of neuroscientific research, allows us
to investigate how high-level cognitive principles can be instantiated as computational mechanisms.
VCNet is a deep neural architecture engineered to systematically operationalize these principles.

3.1 Biologically-Inspired Design as Cognitive Hypotheses

Our model’s design is predicated on two foundational theories of primate vision, which we treat as
core computational hypotheses: the hierarchical nature of representation and the role of predictive
feedback in perception.

Hypothesis 1: Hierarchical Processing Creates Abstract Representations Visual information is
known to propagate from the retina through a well-defined hierarchy of cortical areas (V1, V2, V3,
V4, V5), with each stage specialized for extracting increasingly complex and abstract features [Huff
et al., 2023a]. The primary visual cortex (V1) responds to simple elements like oriented edges. It
projects to V2, which processes intermediate conjunctions like contours and texture. V2, in turn,
projects to higher-order areas: V4, which is crucial for object form and color perception, and V5
(or MT), which is specialized for motion analysis [Huff et al., 2023b]. This complex connectivity,
meticulously mapped using neuronal tracing techniques [Fulton, 2001], is hypothesized to form a
highly efficient cascade for constructing invariant object representations [Sheth and Young, 2016].

Hypothesis 2: Predictive Coding Refines Perception The visual cortex is not a simple feedforward
pipeline. A prominent theory, predictive coding, posits that it is a generative model constantly trying
to predict its sensory inputs. In this framework, higher-level cortical areas send top-down predictions
to lower-level areas. The ascending, bottom-up signals carry the actual sensory information, and
discrepancies between the top-down predictions and bottom-up inputs generate prediction errors.
These error signals are then propagated up the hierarchy to update and refine the brain’s internal
model, with the goal of minimizing future prediction errors and thus forming an efficient and robust
representation of the world [Lowet and Uchida, 2024, Urgen and Miller, 2015].

3.2 Architectural Framework and Its Cognitive Correlates

Departing from monolithic CNN architectures, VCNet is structured as a directed acyclic graph
that models the known connectivity between major visual cortical areas. The channel capacity of
each module is scaled to approximate the relative neuronal populations in its biological counterpart,
reflecting a hypothesis about relative computational load.

The architecture operationalizes the dual-stream hypothesis by separating processing into a ventral
(what) stream for object identification and a dorsal (where/how) stream for spatial reasoning, which
are interconnected to integrate information. To instantiate its core cognitive hypotheses, VCNet
employs several specialized computational blocks, including multi-scale front-ends (V1), recurrent
processing (MT/MST), attentional modulation (CBAM), and lateral interaction. Critically, we
implement the predictive coding hypothesis via a top-down feedback loop from the highest-level
representation (AIT) back to the primary visual module (V1).

4 Experiments: Probing the Cognitive Behaviors of VCNet

We benchmarked VCNet’s performance to investigate how its cognitive architecture influences its
learning and processing capabilities. The experiments were designed not merely to achieve high
scores, but to test specific hypotheses about the consequences of our architectural choices, focusing
on data modalities that are particularly relevant to the function of biological vision.

4.1 Behavioral Account: Inductive Biases for Animal Pattern Classification

Motivation and Hypothesis A key evolutionary driver for primate vision was the need to rapidly
identify patterns for tasks like finding food and avoiding predators [Kaas, 2012, Fornalé et al.,



2012]. The primate visual cortex is therefore highly optimized for this domain. We chose Spots-10
over standard benchmarks like CIFAR-10 to specifically probe the hypothesis that a neuro-inspired
architecture possesses a strong inductive bias for these evolutionarily-relevant visual patterns. This
experiment serves as a behavioral test of our model’s alignment with these cognitive priors.

Methodology We utilized the Spots-10 dataset, which contains 50,000 grayscale 32x32 pixel
images across 10 classes of animal patterns [Atanbori, 2024]. We trained VCNet and compared its
performance against a suite of established and highly-optimized distilled models.

Table 1: Test accuracy and model size on the Spots-10 animal pattern benchmark. The results probe
the model’s inductive bias for a cognitively-relevant task. Baseline models are distilled, as noted. All
models, including VCNet Mini, were finetuned for the same number of epochs.

Model Test Accuracy (%) Model Size (MB)
VCNet Mini (Ours) 92.08 0.04
DenseNet121 Distiller 81.84 0.07
ResNet101V?2 Distiller 80.29 0.07
ResNet50V2 Distiller 79.03 0.07
MobileNet Distiller 78.26 0.07
MobileNetV3-Small Distiller 78.04 0.07

Results and Interpretation As shown in Table 1, VCNet Mini achieves a test accuracy of 92.08%,
substantially outperforming the strongest baseline by 10.24 percentage points. To ensure a fair
comparison with the lightweight distilled baselines, we scaled down VCNet’s hidden-layer widths
to create the Mini variant, which uses only 0.04 MB of storage. This superior performance and
efficiency provide a strong behavioral account supporting our hypothesis. The results suggest that the
architectural priors in VCNet foster internal representations that are exceptionally well-suited to the
statistical regularities of natural patterns, a task domain central to primate visual cognition.

4.2 Processing Account: Light Field Classification

Motivation and Hypothesis Standard 2D images are flat, information-poor projections of the 3D
world. The human visual system (HVS) processes a much richer input, leveraging binocular vision
and eye movements to sample the 7D plenoptic function [Adelson and Bergen, 1991]. This allows
it to perceive a robust 3D scene representation using cues from the light field, like parallax and
view-dependent reflectance Xia et al. [2014]. Light field cameras, which capture both the intensity
and angular direction of light rays, provide data that is a much closer analogue to the HVS’s input
[Lin et al., 2024]. We therefore hypothesize that an architecture designed to emulate the visual cortex
will employ a superior processing algorithm for this richer data modality.

Methodology We evaluated VCNet on the Stanford Light Field dataset [Raj et al., 2016]. We com-
pared its performance against established benchmark models, which were pre-trained on ImageNet
and finetuned for the same number of epochs as VCNet.

Table 2: Performance and Size Comparison on Light Field Image Classification. This experiment
tests the hypothesis that VCNet’s architecture provides a more effective processing algorithm for rich,
multi-view data. Baselines are standard ImageNet pre-trained models. All models were finetuned for
the same number of epochs.

Model Test Accuracy (%) Model Size (MB)
VCNet (Ours) 74.42 3.52
MobileNetV2 72.09 8.66
ResNet18 65.12 42.69
VGG11_BN 51.16 491.39




Results and Interpretation The results, summarized in Table 2, provide a compelling processing
account. VCNet achieved the highest test accuracy (74.42%) while being by far the most compact
model (3.52 MB). This outcome suggests that the architectural features of VCNet, such as its dual-
stream design and multi-scale front-end, constitute a more effective algorithm for integrating the
high-dimensional information present in light field data. This supports our hypothesis that emulating
the brain’s processing strategies leads to models that are better adapted to handle the complexity of
naturalistic visual inputs.

5 Conclusion and Future Work

In this work, we introduced VCNet, an architecture guided by the computational principles of the
primate visual cortex and designed to serve as a computational testbed for cognitive theories of vision.
By explicitly modeling principles like hierarchical dual-stream processing, recurrence, and predictive
coding, we moved beyond standard engineering to develop a cognitive architecture. Our experiments
provide both behavioral and processing accounts, demonstrating that these neuro-inspired priors
lead to superior performance and parameter efficiency on tasks that probe for evolutionarily relevant
biases and the ability to handle rich sensory data. Our work underscores the value of grounding Al
development in cognitive science, suggesting that this approach can help bridge the gap between
what models can do and how they do it.

This research opens several avenues for future work aimed at deepening our cognitive understanding
of these models.

* Systematic Cognitive Probing: Future work should involve systematic ablation studies,
treating the architectural components as testable hypotheses. For example, by removing
the predictive coding loop or disabling the dorsal stream, we can quantify their specific
contributions to behavior, robustness, and internal representation, mirroring the lesion studies
of classical neuroscience.

* Richer Processing Accounts: We plan to investigate more sophisticated and biologically
plausible mechanisms. This includes exploring alternative implementations of predictive
coding, such as those with explicit precision-weighting of error signals, or incorporating
temporal prediction. This would allow for a more detailed processing account of how models
build and maintain a dynamic internal model of their environment.

* Developmental Accounts: Integrating reinforcement learning could allow the model to learn
adaptive visual representations tied to behavioral goals. This would enable a developmental
account of how goal-directed behavior shapes the emergence of visual cognition, offering
a principled path toward understanding and solving the challenge of out-of-distribution
generalization

* Richer Benchmarks: We will expand our evaluation to include comparisons against more
modern architectures (e.g., Vision Transformers) and provide more comprehensive efficiency
metrics, including parameter counts and FLOPs, to ensure fair and complete comparisons.
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A Technical Appendices and Supplementary Material

This appendix provides the supplementary figure and detailed descriptions of the architectural
components of VCNet that were summarized in the main paper.

A.1 Architectural Components and Cognitive Correlates

The following describes the implementation of the core cognitive hypotheses within the VCNet
architecture.

The Ventral Stream as an Object Recognition Algorithm: This what pathway models the cogni-
tive process of object identification. It progresses from a V1 module through modules representing
V2 (Interstripe, Thin Stripe), V4, and the inferotemporal (PIT, CIT, AIT) cortices. This stream is
specialized for extracting features related to an object’s form and identity.

The Dorsal Stream as a Spatial Processing Algorithm: This where/how pathway models spatial
reasoning and motion analysis. It flows from V1 through V2 (Thick Stripe), the middle temporal
(MT) and medial superior temporal (MST) areas, and onward toward parietal regions.

These streams are interconnected, allowing the model to integrate what an object is with where it is, a
crucial aspect of holistic scene understanding. The final representation is formed in the AIT module,
which receives convergent inputs and feeds into the classification layer
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Figure 1: A high-level model of information pathways in the primate visual cortex, illustrating the
hierarchical series of feature extraction stages [Fulton, 2001]. This organization, which separates
information into specialized processing streams, forms the architectural basis of our cognitive model,
VCNet.

A.1.1 Multi-Scale Feature Extraction (V1): Modeling Receptive Field Diversity

To emulate the diverse receptive field sizes in V1, which allows the biological system to perceive
features at multiple scales simultaneously, our V1 module processes input through three parallel
depthwise separable convolution streams with different kernel sizes (3x3, 5x5, 7x7). The resulting
feature maps are concatenated providing a rich, multi-scale initial representation to all subsequent
layers, hypothesizing that this is critical for robust feature detection.

A.1.2 Recurrent Processing Blocks (MT/MST): Modeling Iterative Refinement

To model the cognitive process of iterative refinement, where a perceptual hypothesis is updated over
time, the MT and MST modules incorporate Recurrent Blocks. These blocks apply a convolutional
transformation with shared weights for a fixed number of iterations (t = 3), with each iteration
receiving the output of the previous one plus a residual connection from the initial input. This models
the recurrent processing loops thought to be crucial for motion integration.

A.1.3 Attentional Modulation (CBAM): Modeling Selective Attention

To emulate the brain’s ability to focus on salient features, key modules (V1, MT, V4) incorporate a
Convolutional Block Attention Module (CBAM). CBAM sequentially infers and applies channel-wise
and spatial attention maps, allowing the network to learn to adaptively reweigh features. This is a
direct implementation of the cognitive theory of selective attention.

A.1.4 Lateral Interaction Module (V1): Modeling Contextual Modulation

The V1 module includes a Lateral Interaction block, implemented as a convolution followed by
channel-wise self-attention within a residual connection. This mechanism simulates the function of



horizontal connections within cortical layers that mediate contextual effects like lateral inhibition, a
fundamental process for enhancing edges and contours against their background.

A.1.5 Predictive Coding Loop (AIT to V1): A Direct Implementation of a Cognitive Theory

We implement the predictive coding hypothesis via a top-down connection from the highest level
of the ventral stream (AIT) back to the primary visual module (V1). The AIT module, representing
the most abstract understanding of the input, generates a prediction of V1 feature activations. This
prediction is subtracted from the actual bottom-up V1 activity to compute a prediction error:

€= RGLU(Vlbottom-up - AITtop»down)

This error signal € is then used as an auxiliary learning signal. This serves as a potent, cognitively-
inspired learning signal, driving the network to learn a better generative model of its visual world.

A.1.6 Neuromodulatory Gating: Modeling Global State Changes

To model the global gain control exerted by neuromodulators (like acetylcholine or dopamine), which
can alter the brain’s information processing state, we introduce a Neuromodulation block in key
modules (V1, MT, V4). This block applies a learnable, channel-wise multiplicative scaling factor
to feature maps, allowing the network to dynamically adjust the excitability of different feature
pathways based on the input.

A.2 Training Details

All models were trained using the Adam optimizer [Kingma and Ba, 2015] with a learning rate of
10~3. We used a batch size of 16 and applied standard data augmentation techniques, including
random horizontal flips and random rotations. All experiments were conducted using Google Colab.
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