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Abstract

The adaptation of large language models (LLMs) to specialized reasoning tasks is
fundamentally constrained by computational resources. Parameter-Efficient Fine-
Tuning (PEFT) methods have emerged as a powerful solution, yet the landscape of
these techniques is diverse, with distinct methods operating in either the model’s
weight space or its representation space. This paper investigates the hypothesis
that a synergistic combination of these paradigms can unlock superior performance
and efficiency. We introduce HEFT (Hierarchical Efficient Fine-Tuning), a novel
hierarchical adaptation strategy that composes two distinct PEFT methods in a
coarse-to-fine manner: first, a broad, foundational adaptation in the weight space
using Low-Rank Adaptation (LoRA), followed by a precise, surgical refinement
of internal activations using Representation Fine-Tuning (ReFT). We evaluate this
approach by fine-tuning a Llama-2-7B model on the BoolQ benchmark, a chal-
lenging dataset for inferential reasoning. Our results reveal a profound synergistic
effect. A model fine-tuned for only three epochs with our HEFT strategy achieves
an accuracy of 85.17%, exceeding the performance of models trained for 20 epochs
with either LoRA-only (85.05%) or ReFT-only (83.36%) methodologies. This
work demonstrates that the thoughtful composition of PEFT methods is a potent al-
gorithmic innovation, offering a more efficient and effective path toward advancing
the reasoning capabilities of language models. By achieving superior results with a
fraction of the computational budget, our findings present a principled approach
to overcoming the obstacles inherent in adapting large-scale models for complex
cognitive tasks.

1 Introduction

The advent of large language models (LLMs) has revolutionized natural language processing, largely
driven by a transfer learning paradigm where massive models are pre-trained on web-scale data and
subsequently adapted to downstream tasks [Liu et al., 2022]. While effective, the standard adaptation
method of full-parameter fine-tuning is exceptionally resource-intensive, creating a significant barrier
to both research and practical deployment [Hu et al., 2021]. This has catalyzed a vibrant area of
research into Parameter-Efficient Fine-Tuning (PEFT), a family of techniques that adapt pre-trained
models by updating only a small, strategically chosen subset of parameters [Bian et al., 2025].

Within the PEFT landscape, two prominent and conceptually distinct paradigms have gained traction.
The first, Low-Rank Adaptation (LoRA), operates in the model’s weight space. Based on the
hypothesis that weight updates during adaptation have a low intrinsic rank, LoRA freezes the
original weights and injects small, trainable low-rank matrices to approximate the task-specific
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update [Hu et al., 2021]. The second paradigm, Representation Fine-Tuning (ReFT), operates in the
model’s representation space. Drawing insights from interpretability research, ReFT keeps the entire
base model frozen and instead learns to apply direct, surgical interventions on the model’s hidden
representations as they flow through the network [Wu et al., 2024].

While both LoRA and ReFT offer dramatic efficiency gains, their mechanisms suggest complementary
strengths. LoRA enacts a broad, foundational shift in the model’s parameterization but has been
shown to introduce structural artifacts that can be linked to forgetting [Shuttleworth et al., 2024].
ReFT offers highly precise and interpretable edits to semantic pathways, proving exceptionally
effective for commonsense reasoning tasks, but may be less suited for steering long-form generative
processes than global weight-space methods [Wu et al., 2024]. This distinction raises a crucial
question: can these disparate methodologies be combined to yield a result greater than the sum of
their parts?

This paper introduces and validates HEFT (Hierarchical Efficient Fine-Tuning), a novel hierarchical
adaptation strategy based on a coarse-to-fine hypothesis. We propose first applying LoRA for broad,
foundational tuning, followed by ReFT for targeted, high-precision refinement. We test this approach
on the BoolQ benchmark, a question-answering dataset specifically designed to probe for complex,
entailment-like inference [Clark et al., 2019]. Our empirical results are striking:

• Fine-tuning a Llama-2-7B model with just three epochs of our HEFT strategy achieves an
accuracy of 85.17% on the BoolQ validation set.

• This result surpasses the accuracy achieved after a full 20 epochs of training with LoRA
alone (85.05%) or ReFT alone (83.36%).

• A 20-epoch HEFT approach reaches an even higher accuracy of 85.47%, demonstrating
that the synergistic benefits are sustained with further training.

These findings provide compelling evidence that combining weight-space and representation-space
adaptation is a highly effective and efficient strategy. Our hierarchical fine-tuning method, HEFT, is a
principled algorithmic innovation that overcomes a fundamental challenge, the trade-off between
performance and computational cost in model adaptation. By demonstrating how a smaller model can
achieve reasoning capabilities competitive with models an order of magnitude larger, we illuminate a
pathway to more efficiently improving how language models solve complex tasks.

2 Related work

2.1 The imperative for parameter-efficient fine-tuning

The standard practice of full-parameter fine-tuning (FT), which updates every weight in a pre-trained
model, poses prohibitive scalability challenges. The computational and memory costs are immense,
requiring high-end GPU clusters and extensive training time, placing it beyond the reach of many
researchers [Hu et al., 2021]. The memory footprint for optimizer states, gradients, and activations
can be several times the size of the model itself [Siddika et al., 2025]. Furthermore, FT introduces
significant logistical burdens, as it produces a complete, multi-gigabyte copy of the model for
each downstream task. A more fundamental drawback is catastrophic forgetting, where the intense
adaptation to a narrow task can cause the model to lose some of the general linguistic knowledge
acquired during pre-training [Shuttleworth et al., 2024].

In response, PEFT methods have emerged as a transformative solution [Bian et al., 2025]. By freezing
the vast majority of a model’s weights and training only a small subset of new or existing parameters,
PEFT dramatically reduces computational demands, lowers memory requirements, and accelerates
training cycles [Liu et al., 2022]. The landscape of PEFT is diverse, including additive methods
like Adapters [Houlsby et al., 2019], which inject small new modules; selective methods like BitFit
[Zaken et al., 2021], which tune only bias terms; and reparameterization-based methods, of which
LoRA is the most prominent example [Fu et al., 2023].

2.2 Weight-space adaptation: Low-rank adaptation (LoRA)

LoRA, introduced by Hu et al. [2021], has become one of the most widely adopted PEFT techniques.
Its foundation is the low intrinsic rank hypothesis, which posits that the change in a model’s weight
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matrix, ∆W , during adaptation can be effectively approximated by a matrix of much lower rank.
LoRA operationalizes this by freezing the pre-trained weights W0 and representing the update as a
low-rank product, ∆W = BA. Here, A ∈ Rr×k and B ∈ Rd×r, with the rank r ≪ min(d, k).

During training, only the parameters of A and B are updated. The modified forward pass is computed
as:

h = W0x+∆Wx = W0x+BAx

To control the magnitude of the adaptation, the update is often scaled by a hyperparameter α, resulting
in h = W0x+ α

rBAx. This reparameterization can reduce the number of trainable parameters by
a factor of 10,000 [Hu et al., 2021]. A key practical advantage of LoRA is that it introduces no
inference latency, as the learned matrices A and B can be multiplied and merged with the original
weight matrix W0 after training is complete.

The foundational success of LoRA has spurred an ecosystem of advanced variants. LoRA+ improves
performance and training speed by using different learning rates for the A and B matrices [Hayou
et al., 2024]. Recognizing that a fixed rank for all layers is suboptimal, AdaLoRA [Zhang et al., 2023]
and SalientLoRA [Ke et al., 2024] introduce methods for dynamically allocating the rank budget to
layers based on importance scores, leading to more efficient and effective parameter allocation.

Despite its success, LoRA is not without limitations. A critical analysis by Shuttleworth et al. [2024]
revealed that LoRA’s parameter updates are structurally distinct from those of full fine-tuning. They
find that LoRA introduces intruder dimensions, new, high-ranking singular vectors in the adapted
weight matrix that are dissimilar to any vectors in the pre-trained model. These dimensions are
causally linked to the forgetting of the pre-training distribution, providing a mechanistic explanation
for some of LoRA’s shortcomings and motivating the exploration of complementary fine-tuning
paradigms.

2.3 Representation-space intervention: Representation fine-tuning (ReFT)

A conceptually distinct paradigm, Representation Fine-Tuning (ReFT), shifts the focus from modify-
ing model weights to directly editing the model’s internal hidden representations [Wu et al., 2024].
This approach is born from interpretability research, which has shown that LLM activations encode
rich, structured semantic information. The central hypothesis of ReFT is that directly manipulating
these meaningful representations is a more powerful and efficient mechanism for steering model
behavior than the indirect method of updating weights.

ReFT operates on a completely frozen base model, learning task-specific intervention functions that
are applied to a subset of hidden states at specific layers and token positions during the forward
pass. The most prominent instantiation, Low-rank Linear Subspace ReFT (LoReFT), is built on the
insight that high-level concepts are often encoded within linear subspaces of the representation space.
LoReFT learns a low-rank projection matrix R and a linear transformation (W, b) that operates within
that subspace. The formal intervention on a hidden representation h is:

ΦLoReFT(h) = h+RT ((W (Rh) + b)−Rh)

This mechanism is exceptionally parameter-efficient, learning interventions that are 15 to 65 times
smaller than a typical LoRA configuration while often achieving superior performance, particularly
on commonsense reasoning benchmarks [Wu et al., 2024]. As a newer paradigm, ReFT presents
active research frontiers, including its adaptation to challenging settings like Federated Learning,
which required the development of novel aggregation strategies like in FedReFT [Siddika et al., 2025],
and addressing multi-skill interference through compositional methods like CS-ReFT [Zhou, 2025].

2.4 The BoolQ benchmark for inferential reasoning

Meaningful evaluation of reasoning capabilities requires benchmarks that test more than factual recall.
The Boolean Questions (BoolQ) dataset was created to provide such a challenge [Clark et al., 2019].
It consists of 15,942 naturally occurring yes/no questions sourced from unprompted user search
queries, paired with a relevant passage from a Wikipedia article.

The dataset’s surprising difficulty stems from its naturalistic origin. Unlike extractive QA datasets,
BoolQ questions often require models to perform complex, entailment-like inference, synthesizing
information from multiple sentences and leveraging world knowledge to connect the passage’s content
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to the question’s premise. The original study found that transfer learning from a large-scale natural
language inference (NLI) dataset was the most effective strategy for improving BoolQ performance,
providing strong evidence that the core competency being tested is indeed inferential reasoning
[Clark et al., 2019]. Its inclusion as a core task in the more rigorous SuperGLUE benchmark further
solidifies its status as a robust measure of a model’s deeper language understanding and reasoning
abilities [Wang et al., 2019, Huang and Chang, 2023].

2.5 Composition of PEFT methods

The proliferation of diverse PEFT methods has naturally led to research into their composition. Most
existing work has focused on combining homogeneous modules, typically multiple LoRA adapters,
under the umbrella of LoRA fusion or model merging [Asadi et al., 2024]. Simple approaches involve
averaging the weights of adapters trained on different tasks. More sophisticated techniques learn
optimal weightings for a linear combination of adapters or perform context-dependent fusion based
on the input prompt. While promising, these methods combine modules of the same type. Our work
explores a novel form of heterogeneous composition, hierarchically layering distinct PEFT paradigms
to create a coarse-to-fine adaptation curriculum.

3 Methodology

Our approach, HEFT (Hierarchical Efficient Fine-Tuning), is a hierarchical, two-stage fine-tuning
process designed to leverage the complementary strengths of weight-space and representation-space
adaptation. The core hypothesis is that an initial coarse-grained adaptation with LoRA provides
a strong foundational parameterization that can be more effectively and efficiently refined by a
subsequent fine-grained intervention with ReFT.

3.1 The coarse-to-fine rationale

We frame the hierarchical application of LoRA followed by ReFT within the HEFT framework as a
coarse-to-fine adaptation strategy.

1. Stage 1: Coarse-Grained Adaptation (LoRA). By operating directly on the model’s
weight space, LoRA enacts a broad, foundational shift in the model’s parameterization. This
stage effectively moves the entire model into a region of the high-dimensional solution space
that is better aligned with the general characteristics of the target task. For a reasoning task
like BoolQ, this involves adapting the weights to better handle the inferential and logical
style of the questions. This gets the model into the correct general semantic neighborhood
but may lack precision.

2. Stage 2: Fine-Grained Refinement (ReFT). After LoRA has completed its broad adapta-
tion, ReFT performs a more targeted and surgical intervention. Operating on the model’s
internal representations, ReFT can directly edit the semantic pathways involved in the
reasoning process. This allows for high-precision steering of the model’s activations to
refine its behavior and correct for any imprecision from the initial LoRA tuning. ReFT’s
demonstrated strength on commonsense reasoning makes it an ideal tool for this refinement
stage [Wu et al., 2024].

This two-stage process offers a compelling path to achieving a better trade-off between efficiency and
performance, a central theme in the pursuit of efficient reasoning models [Sui et al., 2025].

3.2 Experimental setup

Base model We use the meta-llama/Llama-2-7b-chat-hf model [Touvron et al., 2023b], a
widely adopted 7-billion parameter LLM, as the foundation for all experiments.

Dataset All fine-tuning and evaluation are performed on the BoolQ dataset [Clark et al., 2019]. We
use the official training split containing 9,427 examples for fine-tuning and report accuracy on the
3,270 examples in the validation split. Each example is formatted into a prompt instructing the model
to answer a given question based on a provided passage with only "Yes" or "No".
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Hardware and software Experiments were conducted using the University of Wisconsin-
Madison’s Center for High Throughput Computing (CHTC). We utilized nodes running CentOS 8
Stream with the SLURM scheduler, each equipped with a single NVIDIA GPU with at least 32GB of
VRAM.

3.3 Implementation details

Our proposed fine-tuning procedure consists of the following two stages:

Stage 1: LoRA fine-tuning We adapt the base Llama-2-7B model using LoRA. The LoRA
configuration targets the model’s linear layers with a rank (r) of 8 and a scaling factor (α) of 32. The
model is trained on the BoolQ training set for a specified number of epochs. Upon completion, the
LoRA adapter weights are merged into the base model’s weights, producing a new, consolidated
model with no inference latency overhead.

Stage 2: ReFT fine-tuning We take the LoRA-adapted model from Stage 1 as the new base model.
Its weights are then kept entirely frozen. We introduce a trainable Low-rank Linear Subspace ReFT
(LoReFT) intervention. Specifically, we configure a 4-dimensional intervention on the block output
representation of the 15th transformer layer. This lightweight intervention is then trained on the same
BoolQ training set.

3.4 Baselines and evaluation

To validate the effectiveness of our hierarchical HEFT approach, we compare it against several
baselines:

• LoRA-Only (20 epochs): The base model is fine-tuned for 20 epochs using only the LoRA
configuration from Stage 1.

• ReFT-Only (20 epochs): The base model is fine-tuned for 20 epochs using only the ReFT
configuration from Stage 2.

• HEFT (20+20 epochs): Our full hierarchical method, where both stages are trained for 20
epochs each, to measure the maximum performance of the combined strategy.

• HEFT (3+3 epochs): Our primary experimental condition to test the efficiency of the
hierarchical approach, where each stage is trained for only 3 epochs.

The primary metric for evaluation is accuracy on the BoolQ validation set.

4 Results

Our experiments confirm the hypothesis that HEFT, our hierarchical LoRA-then-ReFT fine-tuning
strategy, yields significant benefits in both performance and efficiency. The results, summarized
in Table 1, demonstrate a clear synergistic effect where the combined approach outperforms its
individual components, often with significantly less training.

Table 1: Performance on the BoolQ validation set. The hierarchical HEFT approach achieves superior
accuracy with substantially fewer training epochs, highlighting a strong synergistic effect.

Method LoRA Epochs ReFT Epochs Accuracy (%) Time (H:M)
ReFT-Only 0 20 83.36 2:19
LoRA-Only 20 0 85.05 6:52

HEFT 3 3 85.17 1:23
HEFT 20 20 85.47 9:11
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4.1 Analysis of efficiency and performance synergy

The most striking result is the performance of our efficient HEFT configuration. With only 3 epochs
for the LoRA stage and 3 epochs for the ReFT stage, this method achieves an accuracy of 85.17%.
This performance surpasses that of both the LoRA-only model trained for 20 epochs (85.05%)
and the ReFT-only model trained for 20 epochs (83.36%). This key finding demonstrates that the
combined approach not only reaches a better performance ceiling but does so with a fraction of the
computational effort.

The training time further underscores this efficiency gain, as visualized in Figure 1. Our efficient 3+3
epoch HEFT run completed in 1 hour and 23 minutes, achieving a superior result in significantly
less time than the LoRA-only (6 hours and 52 minutes) or ReFT-only (2 hours and 19 minutes
minutes) baselines. This provides strong evidence that this is not merely an additive improvement but
a multiplicative one, where the coarse-grained adaptation from the first stage makes the fine-grained
refinement of the second stage dramatically more effective.

0 100 200 300 400 500 600

83

84

85

86

87

HEFT
3+3 epochs

ReFT-Only
20 epochs

LoRA-Only
20 epochs

HEFT
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Accuracy vs. compute trade-off on BoolQ

Figure 1: The performance-efficiency frontier. Our efficient HEFT method (blue) achieves high
accuracy for a fraction of the training time, occupying the desirable top-left region of the plot.

4.2 Performance in the broader context

To contextualize our results, we compare the performance of our fine-tuned 7B parameter model
against other models on the BoolQ benchmark. As shown in Table 2, our best result of 85.47%
accuracy is highly competitive, placing it on par with or exceeding the zero-shot performance of
much larger models.

It is particularly noteworthy that our fine-tuned 7B model surpasses the zero-shot performance of
leading foundation models like the Llama-2-70B (85.0%) [Touvron et al., 2023b] and the original
Llama-65B (85.3%) [Touvron et al., 2023a]. This result strongly underscores the power of our
synergistic fine-tuning approach. By efficiently composing weight-space and representation-space
methods, we can unlock high-level reasoning capabilities in a relatively small model, achieving
performance typically associated with models an order of magnitude larger. This highlights the
potential of principled PEFT strategies to create highly capable, accessible, and resource-efficient
specialized models.
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Table 2: BoolQ validation accuracy across various models. Our fine-tuned 7B model outperforms
many significantly larger base models evaluated in a zero-shot setting. Zero-shot performance
numbers for base models are taken from Touvron et al. [2023b] and Almazrouei et al. [2023].

Model Size Accuracy (%)
Zero-Shot Performance of Base Models

Falcon 7B 67.5
40B 83.1

MPT 7B 75.0
30B 79.0

Llama 1 7B 76.5
13B 78.1
33B 83.1
65B 85.3

Llama 2 7B 77.4
13B 81.7
34B 83.7
70B 85.0

PaLM 62B 84.8

Chinchilla 70B 83.7
GPT-3 175B 60.5
Gopher 280B 79.3

Our Zero-Shot HEFT Results

HEFT (3 epochs) 7B 85.17
HEFT (20 epochs) 7B 85.47

5 Discussion

The empirical success of our HEFT strategy provides strong support for the coarse-to-fine hypothesis,
which can be understood through the lenses of curriculum learning, mechanistic synergy, and model
modularity.

A methodological curriculum Our approach can be framed as a form of implicit methodological
curriculum learning. Unlike traditional curricula that sequence data from easy to hard, our approach
sequences adaptation paradigms from broad to specific. The initial LoRA stage adapts the model to
the general domain of the BoolQ task, moving the model into a parameter region well-suited for the
required reasoning style. This creates a better-conditioned optimization landscape for the subsequent,
more specialized ReFT stage, which can then converge more rapidly. This two-stage process mirrors
patterns in human skill acquisition, where learning often involves first grasping general rules (a
global adjustment, like LoRA) before refining specific, nuanced execution (a targeted adjustment,
like ReFT).

A mechanistic perspective on synergy The synergy can also be understood from a mechanistic
perspective by considering the distinct operational domains of each method. LoRA, as a weight-space
method, performs a global reparameterization. While effective, this process is indirect and has been
shown to introduce structural artifacts, such as intruder dimensions, that can be causally linked to
the forgetting of pre-trained knowledge [Shuttleworth et al., 2024]. In contrast, ReFT originates
from interpretability research showing that concepts are encoded within low-rank subspaces of the
model’s activation space [Wu et al., 2024]. We hypothesize that LoRA’s coarse adaptation performs a
broad alignment of the model’s representation geometry, effectively moving these crucial semantic
subspaces into a region more favorable for the task. The subsequent ReFT stage can then perform
high-precision interventions directly within these subspaces, sharpening the exact computational
pathways required for inference without the collateral effects of global weight updates. ReFT’s
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surgical precision is thus amplified because it operates on a more amenable foundation prepared by
LoRA.

Implications for model modularity This hierarchical composition also introduces a novel perspec-
tive on model modularity. Much of the existing work on combining PEFT modules has focused on
the parallel fusion of homogeneous adapters, such as averaging multiple LoRA modules [Asadi et al.,
2024]. Our hierarchical approach suggests a different paradigm: creating specialized foundation
models. The LoRA-adapted model is not just a temporary state but a new, consolidated base model
with a foundational aptitude for a specific domain (in this case, inferential reasoning). On top of this
new base, one can layer multiple, extremely lightweight ReFT interventions for even more specialized
sub-skills, a concept that aligns with the goals of compositional methods like CS-ReFT [Zhou, 2025].

6 Limitations

While our results are promising, this study has several limitations that provide context for our findings
and suggest directions for future research.

Task and benchmark specificity Our experiments are conducted exclusively on the BoolQ bench-
mark, a yes/no question-answering task focused on inferential reasoning. The strong synergistic
effects we observe may not generalize equally to all other task types. For example, in long-form
generative tasks, where weight-space methods like LoRA are often favored, the impact of a final
ReFT stage might be different.

Order dependence This work only investigates the hierarchical order of LoRA followed by ReFT,
as motivated by our coarse-to-fine hypothesis. We did not explore the reverse order (ReFT-then-
LoRA) or other potential compositions, such as an iterative, interleaved approach. The optimal
ordering may be task-dependent and remains an open question.

Hyperparameter sensitivity The configurations for LoRA (rank=8, alpha=32) and ReFT (layer=15,
dimension=4) were chosen based on common practices in the literature. We did not perform an
exhaustive hyperparameter search for either the individual methods or their hierarchical combination.
It is possible that further tuning of these hyperparameters could yield different or even stronger
results.

7 Future work

This research opens several avenues for future work. The immediate next step is to evaluate the HEFT
strategy on a broader range of reasoning tasks (e.g., arithmetic, code generation, multi-hop QA) and
across different model architectures and scales. Beyond direct replication, we propose three visionary
directions:

1. Developing a PEFT algebra: This work serves as a proof of concept for composing
heterogeneous PEFT modules. Future research could explore a more general PEFT algebra,
investigating the properties of different compositions (e.g., hierarchical, parallel, nested).
This could lead to a principled framework for building complex model adaptations from a
library of simple, efficient components.

2. Dynamic and conditional composition: Instead of a fixed, static hierarchy, future methods
could learn to dynamically compose PEFT modules. For instance, a lightweight routing
network could decide whether to apply a ReFT intervention based on the input prompt or
the model’s internal state, leading to more efficient and context-aware models.

3. Generalizing the coarse-to-fine principle: The principle of coarse-grained global adapta-
tion followed by fine-grained local refinement could be a powerful recipe in other domains.
For instance, in AI safety, one could use LoRA to instill broad safety principles and then
use ReFT to surgically patch specific, nuanced vulnerabilities or jailbreaks, offering a more
modular and interpretable approach to alignment.
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8 Conclusion

This paper introduced and validated HEFT (Hierarchical Efficient Fine-Tuning), a novel hierarchical
fine-tuning strategy that combines weight-space adaptation (LoRA) with representation-space inter-
vention (ReFT) in a coarse-to-fine manner. By first applying LoRA for broad adaptation followed
by ReFT for precise refinement, we demonstrated a powerful synergistic effect on the challenging
BoolQ inferential reasoning benchmark. Our primary finding is that this combined approach achieves
superior accuracy with significantly less training time compared to using either method in isolation.
Notably, a model trained for only three epochs with our hierarchical HEFT method outperformed
models trained for a full 20 epochs with LoRA-only or ReFT-only.

This work provides compelling evidence that the principled composition of different PEFT methodolo-
gies is a highly promising direction for research and practice. It offers a practical and resource-efficient
pathway to enhancing the reasoning capabilities of LLMs, directly contributing to the ongoing effort
to build more efficient and powerful large reasoning models. The results suggest that the future of
LLM adaptation may lie not in a single best method, but in the intelligent and hierarchical combination
of complementary techniques.
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A Technical Appendices and Supplementary Material

This appendix provides the Python script and HTCondor submission files used for the experiments.

A.1 Python training and evaluation script

# Imports & helpers
import os, json , torch , transformers , pyreft
from peft import get_peft_model , LoraConfig , TaskType
from datasets import load_dataset
from huggingface_hub import login , HfApi
from torch.utils.data import Dataset
from tqdm import tqdm

10

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2404.03592


try:
from huggingface_hub import RepositoryNotFoundError

except ImportError:
from huggingface_hub.utils import RepositoryNotFoundError

# Step 0: setup
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
device = "cuda" if torch.cuda.is_available () else "cpu"
hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN") or os.getenv("HF_TOKEN"

)
if not hf_token:

raise ValueError("HUGGING_FACE_HUB_TOKEN env -var not set.")
login(token=hf_token)
BASE_MODEL = "meta -llama/Llama -2-7b-chat -hf"
HF_USER = "Bell -Herald" # Example user
# NOTE: Repo names would vary based on the experiment run (e.g.,

number of epochs)
HF_REPO_LORA = f"{HF_USER }/ boolq_lora_example"
HF_REPO_REFT = f"{HF_USER }/ boolq_reft_on_lora_example"
RESULTS_FILE = "evaluation_results.json"
api = HfApi()

# Helper data & prompt
BOOLQ_PROMPT_TMPL = """<s>[INST] <<SYS >>
You are a helpful assistant that answers questions with only "Yes" or

"No" based on the provided passage.
<</SYS >>
Passage: %s
Question: %s
Answer: [/INST]"""
def format_boolq(ex):

prompt = BOOLQ_PROMPT_TMPL % (ex["passage"], ex["question"])
answer = "Yes" if ex["answer"] else "No"
return prompt , answer

# Stage 1: LoRA (Coarse -grained Adaptation)
print("\n Stage 1 - LoRA")
try:

api.repo_info(HF_REPO_LORA)
lora_exists = True
print("Found LoRA repo on Hub.")

except RepositoryNotFoundError:
lora_exists = False
print("LoRA repo does not exist yet.")

if lora_exists:
model = transformers.AutoModelForCausalLM.from_pretrained(

HF_REPO_LORA , torch_dtype=torch.bfloat16 , device_map=device)
tokenizer = transformers.AutoTokenizer.from_pretrained(HF_REPO_LORA)

else:
# Build LoRA from scratch
model = transformers.AutoModelForCausalLM.from_pretrained(

BASE_MODEL , torch_dtype=torch.bfloat16 , device_map=device)
tokenizer = transformers.AutoTokenizer.from_pretrained(

BASE_MODEL , model_max_length =2048, padding_side="right", use_fast=
False)

tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token

boolq_train = load_dataset("boolq", split="train")
dataset_lora = [format_boolq(ex) for ex in boolq_train]

class SimpleDS(Dataset):
def __init__(self , pairs , tok , max_len =2048):

self.texts = [p + " " + a + tok.eos_token for p, a in pairs]
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self.tok = tok; self.max_len = max_len
def __len__(self): return len(self.texts)
def __getitem__(self , idx):

enc = self.tok(self.texts[idx], truncation=True , max_length=self
.max_len ,

padding="max_length", return_tensors="pt")
return {k: v.squeeze (0) for k, v in enc.items()}

ds_lora = SimpleDS(dataset_lora , tokenizer)
collator = transformers.DataCollatorForLanguageModeling(tokenizer ,
mlm=False)

lora_cfg = LoraConfig(task_type=TaskType.CAUSAL_LM , r=8, lora_alpha
=32, lora_dropout =0.05)

model = get_peft_model(model , lora_cfg)

# This value was varied for different experiments (e.g., 3 or 20)
EPOCHS_LORA = 3
args_lora = transformers.TrainingArguments(

output_dir="./ lora_out", num_train_epochs=EPOCHS_LORA ,
per_device_train_batch_size =1, gradient_accumulation_steps =32,
learning_rate =2e-4, evaluation_strategy="no", save_strategy="no",
logging_steps =50, report_to="none"

)
trainer_lora = transformers.Trainer(

model=model , tokenizer=tokenizer , args=args_lora ,
train_dataset=ds_lora , data_collator=collator

)
if EPOCHS_LORA > 0:

trainer_lora.train()

# Merge adapters and push to Hub
model = model.merge_and_unload ()
api.create_repo(HF_REPO_LORA , exist_ok=True)
model.push_to_hub(HF_REPO_LORA)
tokenizer.push_to_hub(HF_REPO_LORA)
print("LoRA artefact pushed.")

# Stage 2: ReFT (Fine -grained Refinement)
print("\nStage 2 - ReFT")
boolq_train = load_dataset("boolq", split="train")
pairs = [format_boolq(ex) for ex in boolq_train]
dm_reft = pyreft.make_last_position_supervised_data_module(

tokenizer , model , [p for p, _ in pairs], [a for _, a in pairs ])

reft_cfg = pyreft.ReftConfig(representations =[{
"layer": 15, "component": "block_output", "low_rank_dimension": 4,
"intervention": pyreft.LoreftIntervention(

embed_dim=model.config.hidden_size , low_rank_dimension =4)
}])
reft_model = pyreft.get_reft_model(model , reft_cfg)

# This value was varied for different experiments (e.g., 3 or 20)
EPOCHS_REFT = 3
args_reft = transformers.TrainingArguments(

output_dir="./ reft_out", num_train_epochs=EPOCHS_REFT ,
per_device_train_batch_size =8, gradient_accumulation_steps =4,
learning_rate =2e-4, evaluation_strategy="no", save_strategy="no",
logging_steps =50, report_to="none"

)
trainer_reft = pyreft.ReftTrainerForCausalLM(

model=reft_model , tokenizer=tokenizer , args=args_reft , ** dm_reft)

if EPOCHS_REFT > 0:
trainer_reft.train()

print("ReFT artefact ready.")
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# Step 3: Evaluation
print("\nStep 3 - Eval")
reft_model.set_device(device)
boolq_val = load_dataset("boolq", split="validation")
val_pairs = [format_boolq(ex) for ex in boolq_val]
correct = 0

print(f"Running on {len(val_pairs)} examples")
for prompt , truth in tqdm(val_pairs):

enc = tokenizer(prompt , return_tensors="pt").to(device)
base_unit_location = enc["input_ids"].shape[-1] - 1

_, gen_ids = reft_model.generate(
enc ,
unit_locations ={"sources ->base": (None , [[[ base_unit_location ]]])
},
intervene_on_prompt=True ,
max_new_tokens =5,
eos_token_id=tokenizer.eos_token_id

)
pred_txt = tokenizer.decode(

gen_ids[0, enc.input_ids.shape [1]:] , skip_special_tokens=True).
strip()

pred = "Yes" if "Yes" in pred_txt else ("No" if "No" in pred_txt
else "Unknown")

correct += (pred == truth)

acc = 100 * correct / len(val_pairs)
print(f"Accuracy: {acc:.2f}%")

# Step 4: Save results
json.dump({

"lora_epochs": EPOCHS_LORA ,
"reft_epochs": EPOCHS_REFT ,
"num_validation_samples": len(val_pairs),
"correct_predictions": correct ,
"accuracy": f"{acc:.2f}%"

}, open(RESULTS_FILE , "w"), indent =4)
print(f"Saved results -> {RESULTS_FILE}")

Listing 1: heft_finetuning.py: Main script for HEFT (Hierarchical Efficient Fine-Tuning) and
evaluation.

A.2 HTCondor submission files

The following scripts were used to submit and run the jobs on the CHTC cluster.

container_image = container.sif
executable = heft_exec.sh
transfer_input_files = heft_finetuning.py, .hf_token
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
NAME = condor_outs/job_$(Cluster)_$(Process)
log = $(NAME).log
error = $(NAME).err
output = $(NAME).out
request_cpus = 1
request_gpus = 1
+WantGPULab = true
+GPUJobLength = "medium"
gpus_minimum_memory = 32000
Requirements = (Target.CUDADriverVersion >= 12.4)
request_memory = 32GB
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request_disk = 32GB
queue 1

Listing 2: CHTC submit file (.sub)

#!/bin/bash
echo "starting ..."
HF_HOME="$(pwd)/. cache"
export HF_HOME
HF_TOKEN="$(cat .hf_token)"
export HF_TOKEN
WANDB_MODE="offline"
export WANDB_MODE

# Assuming a conda environment named ’reft ’ is available in the
container

source activate reft

python heft_finetuning.py
echo "ending"

Listing 3: Execution script (.sh)
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