
Co-Evolving Complexity: An Adversarial Framework
for Automatic MARL Curricula

Brennen A. Hill
Department of Computer Science
University of Wisconsin-Madison

Madison, WI 53706
bahill4@wisc.edu

Abstract

The advancement of general-purpose intelligent agents is intrinsically linked to the
environments in which they are trained. While scaling models and datasets has
yielded remarkable capabilities, scaling the complexity, diversity, and interactivity
of environments remains a crucial bottleneck. Hand-crafted environments are
finite and often contain implicit biases, limiting the potential for agents to develop
truly generalizable and robust skills. In this work, we propose a paradigm for
generating a boundless and adaptive curriculum of challenges by framing the
environment generation process as an adversarial game. We introduce a system
where a team of cooperative multi-agent defenders learns to survive against a
procedurally generative attacker. The attacker agent learns to produce increasingly
challenging configurations of enemy units, dynamically creating novel worlds
tailored to exploit the defenders’ current weaknesses. Concurrently, the defender
team learns cooperative strategies to overcome these generated threats. This co-
evolutionary dynamic creates a self-scaling environment where complexity arises
organically from the adversarial interaction, providing an effectively infinite stream
of novel and relevant training data. We demonstrate that with minimal training,
this approach leads to the emergence of complex, intelligent behaviors, such as
flanking and shielding by the attacker, and focus-fire and spreading by the defenders.
Our findings suggest that adversarial co-evolution is a powerful mechanism for
automatically scaling environmental complexity, driving agents towards greater
robustness and strategic depth.

1 Introduction

The development of intelligent agents, especially those leveraging Large Language Models (LLMs),
has underscored the foundational role of environments in cultivating sophisticated behaviors [Wang
et al., 2019]. Environments are not merely passive arenas for evaluation; they are the interactive
substrate from which agents learn adaptive behavior, complex reasoning, and long-term planning.
The trajectory of progress in machine learning has been marked by scaling laws: increasing model
size, dataset volume, and computational power has unlocked emergent capabilities [Silver et al.,
2017]. We posit that a similar principle applies to agent development, where scaling the structure,
fidelity, and diversity of environments is a critical vector for advancing agent intelligence.

Recent breakthroughs in end-to-end reinforcement learning (RL) have made it feasible to train agents
through sustained environmental interaction, moving beyond the limitations of imitation learning
from static datasets [Schulman et al., 2017]. This shift places a greater demand on the environments
themselves. To foster general-purpose autonomy, we require environments that are not only richly
interactive but also perpetually novel, preventing agents from overfitting to a fixed set of scenarios.
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The manual design of such environments is an intractable task, as it requires immense human effort
and is subject to the designers’ inherent biases and limited imagination.

This paper addresses the challenge of scaling environmental complexity through a novel framework:
Learned Adversarial Procedural Generation for Multi-Agent Curricula. We reframe the problem
of environment design as a two-player game between a generative Attacker and a team of cooperative
Defender agents. The Attacker’s goal is to learn a policy for procedurally generating sequences of
hostile units (i.e., worlds or challenges) that can defeat the Defenders. Simultaneously, the multi-agent
Defender team learns a cooperative policy to survive the Attacker’s generated worlds for as long as
possible.

This adversarial dynamic creates a natural and automatic curriculum. As the Defenders improve, the
Attacker is incentivized to generate more sophisticated and complex challenges to remain competitive.
This, in turn, forces the Defenders to develop more robust and coordinated strategies. To further
drive this complexity, we designed the environment to have a combinatorially large action and state
space. The defenders are not identical; each is assigned a unique role with different special abilities.
The attacker, in turn, has a wide range of traits it can assign to the units it generates. In much
of RL, problems are simple toy examples that do not extend beyond their initial experiment. By
intentionally creating a more complex interaction with a vast space of possible environments and
defender actions, we work to address that issue and create a more robust training paradigm. The result
is a co-evolutionary arms race where the environment, embodied by the Attacker, continuously adapts
to challenge the learning agents, effectively generating an infinite stream of increasingly difficult
worlds.

Our primary contributions are:

1. We present a system architecture for co-evolving a generative adversarial agent and a team
of cooperative agents. The adversary’s role is to procedurally generate environmental
challenges, creating an open-ended learning process.

2. We demonstrate that this adversarial framework leads to the rapid emergence of complex
and intelligent strategies in both the generative Attacker and the cooperative Defender team.

3. We provide qualitative and quantitative evidence of emergent behaviors, such as the At-
tacker learning to flank and shield its units, and the Defenders learning to coordinate their
movements and focus fire, behaviors which were not explicitly programmed.

4. We argue that this paradigm serves as a powerful method for scaling environments for
agent training, shifting the focus from hand-crafting content to designing the rules of a
self-perpetuating, complexity-generating system.

The remainder of this paper is structured as follows: Section 2 reviews related work in multi-agent
reinforcement learning, procedural content generation, and adversarial learning. Section 3 details the
formal problem setting and our proposed system architecture. Section 4 describes the implementation,
including the agent models and training regime. Section 5 presents our experimental results, focusing
on the emergent behaviors. Section 6 discusses the implications of our findings and the limitations of
the current work. Finally, Section 7 concludes with a summary of our contributions.

2 Related Work

Our research is situated at the intersection of three key areas: Multi-Agent Reinforcement Learning
(MARL), Procedural Content Generation (PCG), and the use of adversarial dynamics to create
automatic curricula.

2.1 Multi-Agent Reinforcement Learning (MARL)

MARL extends reinforcement learning to scenarios with multiple interacting agents. A central
challenge in MARL is non-stationarity: from any single agent’s perspective, the environment is
constantly changing as other agents adapt their policies [Buşoniu et al., 2008]. This makes learning
unstable. Our system embraces this non-stationarity, leveraging it as the primary driver of learning
for both the Attacker and the Defenders.
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MARL problems can be categorized as cooperative, competitive, or mixed-motive [Zhang et al.,
2019]. Our work features a mixed structure: the Defender team is fully cooperative, while the
relationship between the Defender team and the Attacker is fully competitive, forming a game that is
close to zero-sum. The formal framework for such interactions is the Partially Observable Markov
Game (POMG), where agents must make decisions based on incomplete information about the true
game state [Hansen et al., 2004, Liu et al., 2022]. In our setup, the Defenders have only partial
observability of the Attacker’s internal state, not seeing the Attacker’s energy reserves and policy.

A dominant paradigm in modern MARL is Centralized Training with Decentralized Execution
(CTDE) [de Witt et al., 2020]. In CTDE, agents use global information (e.g., a shared value function)
during training to stabilize learning but act based only on their local observations during execution.
Proximal Policy Optimization (PPO) [Schulman et al., 2017] has proven surprisingly effective in
cooperative MARL settings when adapted to this paradigm (e.g., MAPPO), challenging the notion
that on-policy methods are too sample-inefficient [Yu et al., 2022]. This body of work provides strong
justification for our choice of PPO as the learning algorithm for the cooperative Defender team and
the competitive Attacker.

2.2 Procedural Content Generation (PCG)

Procedural Content Generation refers to the algorithmic creation of game content. Traditional PCG
methods are often constructive or search-based. A more recent paradigm is PCG via Machine
Learning (PCGML), where models are trained on existing content to generate new, similar content
[Summerville et al., 2018]. For example, models can learn to blend existing levels to create novel
combinations [Guzdial and Riedl, 2016]. However, PCGML is fundamentally imitative and its
creative potential is bounded by its training data.

To overcome this limitation, PCG via Reinforcement Learning (PCGRL) was introduced, framing
content generation as an RL problem where an agent learns to iteratively modify a level to maximize
a reward function based on desired properties like playability [Khalifa et al., 2020]. This approach is
inventive rather than imitative, as it can discover novel content through exploration. Our work builds
directly upon this idea, but instead of using a static, hand-crafted reward function, the reward signal
for our generative Attacker is derived dynamically from the performance of another learning agent
(the Defender team).

2.3 Adversarial Learning and Automatic Curricula

The core mechanism of our system is the adversarial dynamic between the generator and the solvers.
This concept has deep roots in machine learning, most notably in Generative Adversarial Networks
(GANs). In the context of RL, adversarial self-play has been shown to be a powerful engine for
generating complexity and achieving superhuman performance without human data, as exemplified by
AlphaGo and AlphaZero [Silver et al., 2016, 2017]. Similarly, competitive multi-agent environments
have been shown to produce a natural curriculum, leading to the emergence of complex skills and
strategies as agents continually adapt to one another [Bansal et al., 2018, Tampuu et al., 2017,
Narvekar et al., 2020].

The explicit use of an adversary for PCG was explored by Volz et al. [Volz et al., 2021] and Gisslén
et al. [Gisslén et al., 2021], who proposed a Generator-Solver framework where the generator is
rewarded for creating challenging but solvable levels for a single solver agent. Our work extends
this adversarial PCG paradigm in several critical dimensions. We transition from a single-solver
setting to a multi-agent cooperative team, elevating the task from solving static puzzles to developing
dynamic, coordinated strategies against a learning adversary. Second, our generator operates at
a more fundamental level with fine-grained control over the challenge. We shift the focus from
generating solvable static environments to orchestrating a dynamic, self-scaling curriculum.

This process of co-evolution, where agents and their environments develop in tandem, has been iden-
tified as a powerful method for open-ended learning. The POET algorithm, for instance, co-evolves
a population of environments and agent policies, leading to the continual generation of novel and
complex challenges [Wang et al., 2019]. Other work has explored co-evolving an agent’s morphology
alongside its environment [Ao et al., 2023]. Our system can be seen as a specific instantiation of this
broader principle, using a competitive game to drive the co-evolution of environmental challenges
(from the Attacker) and solving policies (from the Defenders). This dynamic automatically generates
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goals of appropriate difficulty, a key principle in automatic curriculum generation [Florensa et al.,
2018]. Finally, our use of PPO is further supported by its extensibility for training policies robust to
adversarial perturbations [Wu et al., 2021, Zhang et al., 2020].

3 System Design and Methodology

We formalize our system as a two-team, nearly zero-sum, partially observable Markov game (POMG)
[Hansen et al., 2004]. The game consists of Team D, a set of N = 4 cooperative Defender agents,
and Team A, a single adversarial Attacker agent.

3.1 Environment

The game takes place on a discrete 2D grid, representing a board with 10 lanes (x-axis) and 30 tiles
of depth (y-axis). The Defender agents are constrained to the first four rows (y ∈ [0, 3]), while the
Attacker operates from the far end of the board (y = 29). Time proceeds in discrete timesteps. The
Defenders win by surviving, while the Attacker wins if a unit reaches the bottom edge or if any
Defender is defeated.

Figure 1: The game environment. The four Defender agents (1), (2), (3), and (4) can only move
horizontally. The arbitrary number of orange Units (5), (6), (7), and (8) generated by the Attacker
move vertically from the top of the board downwards.

3.2 Agents and Actions

3.2.1 The Defender Team

The Defender team consists of four agents, each assigned one of four unique roles, detailed in Table
5. Each Defender has a persistent state defined by its position (xi, zi), current health (max 100), and
current energy (max 1000), which replenishes at 1 unit/tick. At each tick, each Defender i ∈ {1, ..., 4}
chooses an action from the discrete action space detailed in Table 1.

Table 1: Defender agent action space and energy costs.
Action Energy Cost Description

Move Left/Right 5 Change the agent’s x-coordinate by -1 or +1.
Shoot 10 Fire a projectile down the current lane.
Heal 50 Restore a portion of its own health.
Special Ability 200 A powerful, role-specific action.
Do Nothing 0 Conserve energy.
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3.2.2 The Attacker (Generative) Agent

The Attacker agent’s role is to procedurally generate challenges. Its state is defined by its current and
maximum energy, which slowly increases over time. At each tick, the Attacker chooses an action aA:
generate a unit with specific parameters or do nothing to conserve energy. The parameter vector θ
that defines a unit’s attributes is the core of the procedural generation, creating a vast combinatorial
space of possible enemies, detailed in Table 2.

Table 2: Parameter space for the procedurally generated units by the Attacker agent. The agent can
choose from a discrete set of values within the specified ranges to define a unit’s attributes.

Category Parameter & Range
Placement Lane x ∈ [0, 9]
Core Stats Health (1-15), Damage (1-5), Speed (1-5), Range (1-25)
Special Attributes Regeneration (0-3 health/tick), Leech (0-5 health on attack)
Defenses Physical Defense (0-5), Magic Defense (0-5)
Offenses Physical and (0-5), Magic Penetration (0-5), Type (Physical/Magic)

The energy cost of generating a unit is a superlinear, multiplicative function of its parameters θ. More
powerful units are exponentially more expensive, forcing the Attacker to make strategic trade-offs
between quantity and quality.

3.2.3 Unit Behavior

Generated units are not controlled by the Attacker. They follow a hard-coded behavior: move forward
(decrease y-coordinate) each tick. If a Defender is in the same lane and within range, the unit stops
moving and attacks. This ensures challenge complexity arises from the Attacker’s generative choices,
not from complex unit AI.

3.3 Game Dynamics and Objectives

An episode begins with four Defenders and the Attacker. The episode ends when one of two
termination conditions is met: (1) An enemy unit reaches the Defenders’ baseline (y < 0), or (2) Any
Defender’s health drops to zero. If either occurs, the Attacker wins. The Defenders’ objective is to
survive as long as possible; the Attacker’s is to win as quickly as possible.

4 Experiments and Results

The primary goal was to investigate whether intelligent, complex, and adaptive strategies would
emerge from the adversarial co-evolutionary process. Success was measured by the qualitative and
quantitative richness of the observed behaviors after 500 episodes, compared against a baseline where
both sides selected actions uniformly at random.

4.1 Baseline Comparison

The baseline agents exhibited no intelligent behavior. The random attacker generated units with
arbitrary parameters at random locations and times. The random defenders moved without purpose,
failing to engage units or wasting energy. Episodes were brief, with defenders being quickly
overwhelmed.

4.2 Emergent Behaviors

Intelligent strategies had clearly emerged after 500 episodes. The co-evolutionary pressure forced
both sides to develop sophisticated tactics to counter each other.

4.2.1 Emergent Attacker Strategies

The Attacker learned to move beyond simply generating strong enemies and began to exhibit temporal
and spatial reasoning.
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The Attacker learned to move beyond simply generating strong enemies and began to exhibit temporal
and spatial reasoning. It developed several distinct tactics, including: the Rusher strategy, where it
generated units with very high speed and minimal other stats to race past defenders; the Tandem
strategy (Figure 3a), a notable tactic of generating a high-health unit to act as a shield for a high-
damage unit directly behind it in the same lane; and the Flanking strategy (Figure 3b), where it
exploited the Defenders’ limited mobility by generating simultaneous threats on opposite sides of the
board.

4.2.2 Emergent Defender Strategies

In response, the Defender team developed coordinated behaviors. Despite a shared policy and no
explicit communication channel, their actions became implicitly coordinated.

In response, the Defender team developed coordinated behaviors. Despite a shared policy and no
explicit communication channel, their actions became implicitly coordinated. For example, they
learned Cooperative Spreading (Figure 4a), where, when faced with multiple threats (such as from
Flanking), defenders learned to spread out to cover the relevant lanes. Conversely, they also learned
Cooperative Focusing (Figure 4b), where multiple defenders would converge on the same lane to
concentrate firepower on a single, high-priority threat (such as from the Tandem strategy).

4.3 Quantitative Analysis

To ground our observations, we quantified the frequency of emergent strategies by defining and
watching for four signature behaviors detailed in Table 7. quantitative metrics reported in this section
are the average values obtained from 100 independent runs to ensure statistical reliability.

Table 3 presents the statistics for these strategies after 500 training episodes, averaged across 100
independent runs, comparing the trained agents to the random baseline. The difference is stark. The
trained agents’ average episode length was over four times longer than the baseline (83 steps vs. 19),
demonstrating a vastly superior ability to survive. This increased survival time is directly attributable
to the adoption of coherent strategies.

As shown in Table 3, the trained Attacker employed the Tandem and Flanking strategies in over 98%
and 94% of episodes, respectively. These were not rare occurrences but the core of its learned policy.
Similarly, the Defender team utilized Cooperative Spreading and Focusing in 92.6% and 81.4% of
episodes. In contrast, the random baseline agents triggered these strategic patterns at rates below
11%, consistent with chance occurrences in a short episode. The average uses per episode show
that the trained agents repeatedly and deliberately execute these tactics, whereas the random agents
barely perform them once across ten episodes. This data provides strong quantitative validation that
the adversarial process did not just improve agent performance but induced the learning of specific,
recognizable, and effective multi-agent tactics.

Table 3: Frequency of Emergent Strategies After 500 Episodes, averaged across 100 runs.
Agent Type Strategy Metric Trained Agents Random Baseline

Defender Cooperative Strategies

Defender Cooperative Spreading (Avg. Uses/Ep) 3.61 0.0104
Cooperative Spreading (Usage Rate) 92.6% 0.837%

Cooperative Focusing (Avg. Uses/Ep) 2.97 0.00906
Cooperative Focusing (Usage Rate) 81.4% 0.548%

Attacker Generative Strategies

Attacker Flanking (Avg. Uses/Ep) 4.85 0.128
Flanking (Usage Rate) 94.0% 10.3%

Tandem (Avg. Uses/Ep) 8.01 0.0919
Tandem (Usage Rate) 98.2% 6.73%

Avg. Episode Length (steps) 83 19
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4.4 Ablation Study: The Necessity of Co-Evolution

To isolate the impact of the adversarial dynamic, we conducted two additional experiments where one
agent was trained against a non-learning, random opponent for 500 episodes. The results, summarized
in Table 4, underscore that co-evolution is the primary driver of strategic complexity.

First, we trained the Defender team against a perpetually random Attacker. The Defenders survived
significantly longer against a random generator, with an average episode length of 216 steps. They
rarely employed cooperative strategies, using Spreading at a rate of 13.2% and Focusing at 9.30%.
Accounting for the longer episodes, the Defenders hardly improved from the random baseline. Quali-
tatively, many of these rare instances appeared more as random chance than intentional maneuvers.
The challenge remained simple, and the learning plateaued.

Conversely, we trained the Attacker against a team of random Defenders. The results were even
more telling. The average episode length plummeted to just 14 steps, as the random Defenders
offered virtually no resistance. Critically, the incentive to develop intelligent strategies vanished. The
Flanking and Tandem strategies appeared at rates of only 13.7% and 21.2%, respectively. Without a
competent opponent to challenge it, the Attacker’s policy failed to develop strategic depth, succeeding
simple unit spawns. Together, these ablations provide strong evidence that it is the mutual, reciprocal
adaptation, the co-evolutionary arms race, that generates the rich, emergent behaviors observed in our
main experiment.

Table 4: Ablation Study: Strategy Frequency When Training Against a Random Opponent, averaged
over 100 independent runs.

Agent Type Metric Value
Trained Defender vs. Random Attacker

Defender Avg. Episode Length (steps) 216

Cooperative Spreading (Avg. Uses/Ep) 0.188
Cooperative Spreading (Usage Rate) 13.2%

Cooperative Focusing (Avg. Uses/Ep) 0.113
Cooperative Focusing (Usage Rate) 9.30%

Trained Attacker vs. Random Defender

Attacker Avg. Episode Length (steps) 14

Flanking (Avg. Uses/Ep) 0.184
Flanking (Usage Rate) 13.7%

Tandem (Avg. Uses/Ep) 0.328
Tandem (Usage Rate) 21.2%

This strategic evolution is also reflected in the overall training dynamics. As shown in Figure 2, the
average survival time of the defenders generally increased, indicating skill improvement. However,
the curve is not monotonic; it exhibits significant oscillations. These dips often correspond to
moments where the Attacker discovers a new, effective strategy that temporarily overcomes the
Defenders’ current policy. The Defenders then adapt, and the survival time climbs again. This
oscillating pattern is characteristic of a co-evolutionary arms race and provides evidence of the
ongoing adaptive process.

5 Discussion

Our results demonstrate that a co-evolutionary, adversarial framework can automatically generate a
rich and adaptive curriculum for multi-agent systems. This section discusses the broader implications
of this finding, situating it within the context of automatic curriculum generation, the nature of the
emergent arms race, its impact on agent generalization, and its limitations.

7



0 100 200 300 400 500
0

20

40

60

80

100

Training Episode

A
ve

ra
ge

E
pi

so
de

L
en

gt
h

(T
ic

ks
)

Defender Survival Time Over Training

Defender Survival

Figure 2: An illustration of the average episode length (Defender survival time in ticks) over training
Episode. The plot represents the general upward trend indicating skill improvement, alongside the
oscillations suggesting an ongoing arms race where the Attacker discovers new strategies. This curve
is representative of the observed dynamic rather than a plot of raw data from a single training run.

5.1 Adversarial Generation as a Self-Scaling Curriculum

The findings strongly support the hypothesis that adversarial co-evolution is a potent mechanism
for automatic curriculum generation. The Attacker agent, motivated to defeat the Defenders, is
intrinsically driven to generate challenges at the frontier of the Defenders’ capabilities. Challenges
that are too easy do not yield rewards, while those that are truly impossible are prohibitively expensive
in terms of energy, disincentivizing their creation. Consequently, the Attacker is naturally guided to
probe and exploit specific weaknesses in the Defenders’ current collective policy.

This process transforms the environment generator into a learned, adaptive loss function for the
solver agents. Instead of training against a static dataset of challenges, the Defenders learn against
a dynamic adversary whose sole purpose is to maximize their failure. This dynamic efficiently
searches the combinatorially vast space of possible worlds (diverse units in Table 2) to find the
small subset of configurations that are maximally informative for driving learning. The efficacy
of this curriculum is quantitatively evident; trained agents adopt specific, complex tactics such as
the Attacker’s Tandem strategy (employed in 98.2% of episodes) and the Defenders’ Cooperative
Spreading (92.6%) (Table 3). This stands in stark contrast to our ablation studies, where training
against a static, random opponent resulted in significantly less strategic depth (Table 4). The infinite
stream of novel never-ending worlds is not just a theoretical construct; it is the emergent outcome of
this adversarial dynamic, ensuring that the agents never exhaust their supply of relevant training data.

5.2 The Nature of the Co-evolutionary Arms Race

The oscillating performance curve seen in Figure 2 is a hallmark of a co-evolutionary arms race, a
dynamic akin to the Red Queen hypothesis in evolutionary biology, where species must constantly
adapt simply to maintain their viability against evolving competitors [Van Valen, 1973]. The dips in
Defender survival time likely correspond to moments where the Attacker discovers a new, effective
strategy (e.g., a novel combination of unit parameters that bypasses the Defenders’ current meta).
This creates a strong learning signal for the Defender team, which must then adapt and develop a
counter-strategy, leading to a subsequent rise in survival time.

This perpetual non-stationarity, driven by the arms race, is a desirable feature for open-ended learning.
Our ablation studies confirm its necessity; when one side ceased to adapt, the strategic evolution of
the other quickly stalled (Table 4). It prevents the agents from converging to a single, brittle policy.
Instead of reaching a stable Nash equilibrium, the system navigates a continuous cycle of strategies
and counter-strategies. For instance, the Attacker may favor Flanking, forcing the Defenders to
master Spreading. A proficient Spreading defense then incentivizes the Attacker to pivot to a Tandem
strategy, which in turn requires the Defenders to learn Focusing. This cycle prevents catastrophic
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forgetting of old skills, as any abandoned strategy may be re-exploited by the adversary, compelling
agents to maintain a broad and robust repertoire of behaviors.

5.3 Implications for Generalization and Robustness

A primary goal in scaling environments is to produce agents that generalize to unseen situations.
Our adversarial framework directly promotes generalization by design. Because the environment
is actively hostile and non-stationary, the Defender agents cannot succeed by merely memorizing
solutions to a fixed set of problems. They are forced to learn a more general, adaptive policy.

Furthermore, the Attacker functions as an automated red-teaming agent. It is trained to find the
edge cases and blind spots in the Defenders’ collective policy. This provides a far more efficient
and exhaustive method for improving agent robustness than manual testing or curation of test cases.
The system inherently generates a stress-testing suite that is always tailored to the agent’s present
capabilities, hardening the agent against a wide range of potential exploits. This suggests that such
adversarial generation frameworks could become a standard component in pipelines for developing
safe and reliable autonomous agents.

5.4 Limitations and Future Work

While promising, this work has several limitations that open avenues for future research. The training
was conducted on consumer hardware for only 500 episodes; a longer training period would likely
reveal even more sophisticated, multi-layered strategies.

A key direction for future work is the integration of Large Language Models (LLMs). An LLM could
act as the generative Attacker, tasked with formulating high-level strategic goals (e.g., "create a pincer
movement using fast units") which are then translated into specific unit generation actions. This
would test the LLM’s capacity for strategic reasoning in an interactive setting. Conversely, LLMs
could be used by the Defender team for high-level planning or explicit communication, enabling
more complex coordination.

Another promising avenue lies in scaling the complexity of the generator itself. The Attacker could
be empowered to modify the environment’s topology, place obstacles, or even design new types of
units with unique, hard-coded behaviors. This concept also relates to tool-use; the Attacker’s current
action space is compositional, as it combines attributes (tools) to create a unit. Expanding this to a
richer set of environmental tools would be a natural next step.

Finally, while we identified emergent strategies qualitatively and quantitatively, a deeper analysis of
the learned policies is warranted. Techniques from explainable AI could be used to dissect the agents’
decision-making processes, providing clearer insight into the mechanics of the co-evolutionary
learning process. Exploring population-based training, where multiple species of Attackers and
Defender teams co-evolve, could also lead to a richer and more diverse ecosystem of emergent
strategies.

6 Conclusion

We have presented a system for multi-agent learning driven by adversarial procedural generation.
By framing the interaction between a generative Attacker and a cooperative Defender team as a
nearly zero-sum game, we successfully created a co-evolutionary dynamic that automatically scales
environmental complexity in a targeted, adaptive manner. Our implementation demonstrates that this
approach fosters the rapid emergence of intelligent, coordinated, and non-trivial strategies in both the
generator and the solver agents, a finding supported by both qualitative observation and quantitative
analysis.

This work contributes to the growing body of evidence that adversarial self-play is a powerful
paradigm for generating complexity without human data. It offers a practical path forward for scaling
environments to meet the demands of increasingly general and autonomous agents. By shifting the
research focus from the manual design of static content to the architectural design of self-scaling,
complexity-generating systems, we can create training methodologies that continuously challenge
our agents, pushing them towards greater robustness, strategic depth, and general intelligence.
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A Environment Design Details

This section provides additional details on the game’s formal structure, reward functions, and the
specific roles of the Defender agents.

A.1 Formalism as a Partially Observable Markov Game

The system is a POMG defined by the tuple ⟨I, S, {Ai}i∈I , T,R, {Ωi}i∈I , O⟩. Here, I =
{A,D1, D2, D3, D4} is the set of agents; S is the global state space containing the positions, health,
and energy of all agents and units; Ai is the action space for agent i; T (s′|s, a⃗) is the state transition
function; Ri(s, a⃗) is the reward function, which is nearly zero-sum such that RA ≈ −

∑4
j=1 RDj ;

Ωi is the observation space for agent i; and O(oi|s, ai) is the observation function. Each Defender
observes its own state, the state of other defenders, and nearby units, but not the Attacker’s energy.
The Attacker observes the full game state.

A.2 Reward Structure

The reward functions are designed to incentivize the core objectives of each side.

• For the Defenders, the reward signal includes a large negative reward for losing (Rloss =
−1.0), a small positive reward for each tick survived (Rtick = +0.001), and a shaping
reward for destroying an enemy unit (Rkill = +0.05).

• For the Attacker, the signal is symmetrical: a large positive reward for winning (Rwin =
+1.0), a small penalty per tick (Rtick = −0.001), and a shaping penalty for attempting to
spawn a unit with insufficient energy (Rfail = −0.03).

This structure creates a strong competitive pressure, driving both sides to improve.

A.3 Defender Role Specifications

Each of the four Defender agents is assigned a unique role with distinct statistics and a powerful
special ability, encouraging strategic differentiation within the cooperative team. The details are
specified in Table 5.

B Implementation Details

This section describes the technical implementation, including the agent architectures and the hyper-
parameters used for training.

B.1 Training Environment and Agent Architectures

We implemented our system using the Unity game engine and the ML-Agents Toolkit. Both agent
types use a Multi-Layer Perceptron (MLP) architecture with two hidden layers of 128 neurons each
using the ReLU activation function. The choice of a simple architecture was deliberate to emphasize
that emergent complexity arises from environmental interaction rather than from an overly complex
model.
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Table 5: Detailed Defender role specifications, including damage type, base statistics, and unique
special abilities.

Role Damage Type Base Statistics Special Ability
(Cost: 200 En-
ergy)

Mage (Blue) Magic Low Phys. Def.High Magic Def. Debuff Enemies:
Removes all phys-
ical and magic de-
fense from all ac-
tive enemy units.

Healer (Green) Magic Low Overall Stats Total Party Heal:
Performs a large
heal on all four
friendly defenders.

Tank (Black) Physical High Phys. Def.Low Magic Def. Cannon: Deals
massive area-of-
effect physical
damage to the
densest cluster of
enemies.

Sharpshooter (Red) Physical High Phys. Pen. Low Defenses Clear Lane: Deals
very high dam-
age to all enemy
units in the Sharp-
shooter’s current
lane.

B.1.1 Defender Model

The Defender model uses a 126-dimensional input observation vector, which includes the agent’s
own status (energy, health, position, role), the status of the other three defenders, and the attributes of
up to 16 nearby enemy units. The output is a 6-node layer for the discrete action space, producing a
probability distribution via a softmax function.

B.1.2 Attacker (Generator) Model

The Attacker model takes a 254-dimensional input observation vector, containing its own status
(energy and max energy) and the full status of all defenders and up to 16 active units. Its complex
action is modeled with a multi-branched output consisting of 13 separate heads, one for each unit
parameter detailed in Table 2. A softmax is applied to each head independently, allowing the agent to
learn a joint distribution over all unit parameters.

B.2 Training Algorithm and Hyperparameters

Both the Defender team and the Attacker are trained simultaneously using Proximal Policy Optimiza-
tion (PPO) [Schulman et al., 2017]. PPO is an on-policy, actor-critic algorithm known for its stability,
making it a strong choice for this complex multi-agent setting [Yu et al., 2022]. The four Defender
agents are trained using a shared policy to encourage the development of cooperative strategies. The
policies of the Attacker and Defenders are updated concurrently. 100 training runs were conducted
for 500 episodes on a consumer-grade laptop (Intel Core i5-1035G7 CPU). An episode corresponds
to a single game ending in a Defender loss. Key hyperparameters are listed in Table 6.
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Table 6: Training Hyperparameters for PPO.
Hyperparameter Value

Learning Rate (α) 3.0× 10−4

Batch Size 128
PPO Epsilon (ϵ) 0.2
Entropy Bonus (β) 5.0× 10−4

C Emergent Strategy Details

This section provides the specific definitions used to quantify the emergent strategies discussed in the
main paper, along with visualizations of these strategies in action.

C.1 Strategy Definitions

To ground our qualitative observations, we quantified the frequency of emergent strategies by defining
four signature behaviors. These definitions, provided in Table 7, were used to generate the statistics
in Table 3.

Table 7: Definitions used for quantifying emergent strategies.
Strategy Quantifiable Definition
Cooperative Spreading Triggered when no two defenders occupy the same lane for at least 5

consecutive timesteps.

Cooperative Focusing Triggered when at least three defenders occupy the same lane for at
least 2 consecutive timesteps.

Flanking Triggered when the Attacker spawns units on both the far-left lanes (0
or 1) and far-right lanes (8 or 9) within a 2-timestep window.

Tandem Triggered when the Attacker spawns a unit into a lane that already
contains a unit spawned on the previous timestep.

C.2 Visualizations of Emergent Strategies

Figures 3 and 4 provide visual examples of the key strategies that emerged during co-evolutionary
training.
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(a) The Tandem Strategy. The attacker generates a
durable unit followed immediately by a high-damage
unit (1) in the same lane.

(b) The Flanking Strategy. The attacker generates two
threats (1) on opposite sides of the board simultane-
ously.

Figure 3: Examples of emergent adversarial strategies from the generative Attacker agent.

(a) Cooperative Spreading. Defenders (1) position
themselves in different lanes to counter multiple,
spread-out units (2).

(b) Cooperative Focusing. All defenders (1) converge
on a single lane to focus fire on a high-priority target
(2).

Figure 4: Examples of emergent cooperative strategies from the Defender team.
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